17 research outputs found

    Impaired response of blood neutrophils to cell-death stimulus differentiates AQP4-IgG-seropositive NMOSD from MOGAD

    Get PDF
    BACKGROUND: In neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), neutrophils are found in CNS lesions. We previously demonstrated that NMOSD neutrophils show functional deficiencies. Thus, we hypothesized that neutrophil accumulation in the CNS may be facilitated by impairments affecting mechanisms of neutrophil death. OBJECTIVE: To evaluate cell death in blood neutrophils from aquaporin-4 (AQP4)-IgG-seropositive NMOSD and MOGAD patients as well as matched healthy controls (HC) using in vitro assays. METHODS: Twenty-eight AQP4 + NMOSD and 19 MOGAD patients in stable disease phase as well as 45 age- and sex-matched HC were prospectively recruited. To induce cell death, isolated neutrophils were cultured with/without phorbol 12-myristate 13-acetate (PMA). Spontaneous and PMA-induced NETosis and apoptosis were analyzed using 7-AAD and annexin-V by flow cytometry. Caspase-3 was assessed by western blot. Myeloperoxidase-DNA complexes (MPO-DNA), MPO and elastase were evaluated by ELISA, and cell-free DNA (cfDNA) by a fluorescence-based assay. Reactive oxygen species (ROS) were evaluated by a dihydrorhodamine 123-based cytometric assay. Serum GM-CSF, IL-6, IL-8, IL-15, TNF-ɑ and IL-10 were evaluated by multiplex assays, and neurofilament light chain (NfL) by single-molecule array assay. RESULTS: In response to PMA, neutrophils from AQP4 + NMOSD but not from MOGAD patients showed an increased survival, and subsequent reduced cell death (29.6% annexin V(+) 7-AAD(+)) when compared to HC (44.7%, p = 0.0006). However, AQP4 + NMOSD also showed a mild increase in annexin V(+) 7-AAD(-) early apoptotic neutrophils (24.5%) compared to HC (20.8%, p = 0.048). PMA-induced reduction of caspase-3 activation was more pronounced in HC (p = 0.020) than in AQP4 + NMOSD neutrophils (p = 0.052). No differences were observed in neutrophil-derived MPO-DNA or serum levels of MPO, elastase, IL-6, IL-8 and TNF-ɑ. IL-15 levels were increased in both groups of patients. In AQP4 + NMOSD, an increase in cfDNA, GM-CSF and IL-10 was found in serum. A positive correlation among cfDNA and NfL was found in AQP4 + NMOSD. CONCLUSIONS: AQP4 + NMOSD neutrophils showed an increased survival capacity in response to PMA when compared to matched HC neutrophils. Although the data indicate that the apoptotic but not the NETotic response is altered in these neutrophils, additional evaluations are required to validate this observation

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Bosma Arhinia Mikrophthalmie Syndrom (Falldarstellung)

    No full text

    Novel GDI1 mutation in a large family with nonsyndromic X-linked intellectual disability

    No full text
    X-linked intellectual disability (XLID) is a heterogeneous disorder, and mutations in more than 90 genes have been associated with XLID to date. We report on a large multi-generational German family in which the affected male family members had nonsyndromic intellectual disability, that is, they had neither abnormal body measurements nor any other significant clinical problems. Molecular genetic analysis revealed a frameshift mutation in GDI1 (c.1185_1186delAG; Ser396ProfsX15) that co-segregated with the disease. GDI1 encodes for the GDP-dissociation inhibitor alpha (alphaGDI), a protein involved in the regulation of the activity of Rab GTPases. Only three families with GDI1 mutations have been reported so far. The present family supports the lack of additional phenotypic features in patients with GDI1 mutations, rendering a clinical diagnosis of GDI1-associated XLID impossible. Thus, this family not only broadens the spectrum of GDI1 mutations but also emphasizes the need for parallel testing of all known genes associated with ID in patients with an unspecific phenotype

    Molecular and clinical studies in 8 patients with Temple syndrome

    Get PDF
    Temple syndrome (TS14, #616222) is a rare imprinting disorder characterised by phenotypic features including pre- and postnatal growth retardation, muscular hypotonia and feeding difficulties in infancy, early puberty and short stature with small hands and feet and often truncal obesity. It is caused by maternal uniparental disomies, paternal deletions and primary imprinting defects that affect the chromosomal region 14q32 and lead to a disturbed expression of imprinted genes in this region. Here, we present detailed clinical data of 8 patients with Temple syndrome, 4 with an imprinting defect, 2 with an imprinting defect in a mosaic state as well as 1 complete and 1 segmental maternal uniparental disomy of chromosome 14
    corecore