1,002 research outputs found

    Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols

    Full text link
    Monohydroxy alcohols show a structural relaxation and at longer time scales a Debye-type dielectric peak. From spin-lattice relaxation experiments using different nuclear probes an intermediate, slower-than-structural dynamics is identified for n-butanol. Based on these findings and on diffusion measurements, a model of self-restructuring, transient chains is proposed. The model is demonstrated to explain consistently the so far puzzling observations made for this class of hydrogen-bonded glass forming liquids.Comment: 4 pages, 4 figure

    Generalized 2d dilaton gravity with matter fields

    Get PDF
    We extend the classical integrability of the CGHS model of 2d dilaton gravity [1] to a larger class of models, allowing the gravitational part of the action to depend more generally on the dilaton field and, simultaneously, adding fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we provide the complete solution of the most general dilaton-dependent 2d gravity action coupled to chiral fermions. The latter analysis is generalized to a chiral fermion multiplet with a non-abelian gauge symmetry as well as to the (anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p. 26, referring to a work of S. Solodukhin, reformulated; references adde

    Transition from accelerated to decelerated regimes in JT and CGHS cosmologies

    Full text link
    In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the cosmic scale function, its acceleration, the energy density and the hydrostatic pressure are the physical quantities obtained in through the analysis.Comment: To appear in Europhysics Letter

    Numerical simulations of string networks in the Abelian-Higgs model

    Get PDF
    We present the results of a field theory simulation of networks of strings in the Abelian Higgs model. Starting from a random initial configuration we show that the resulting vortex tangle approaches a self-similar regime in which the length density of lines of zeros of ϕ\phi reduces as t−2t^{-2}. We demonstrate that the network loses energy directly into scalar and gauge radiation. These results support a recent claim that particle production, and not gravitational radiation, is the dominant energy loss mechanism for cosmic strings. This means that cosmic strings in Grand Unified Theories are severely constrained by high energy cosmic ray fluxes: either they are ruled out, or an implausibly small fraction of their energy ends up in quarks and leptons.Comment: 4pp RevTeX, 3 eps figures, clarifications and new results included, to be published in Phys. Rev. Let

    The Feature Importance Ranking Measure

    Full text link
    Most accurate predictions are typically obtained by learning machines with complex feature spaces (as e.g. induced by kernels). Unfortunately, such decision rules are hardly accessible to humans and cannot easily be used to gain insights about the application domain. Therefore, one often resorts to linear models in combination with variable selection, thereby sacrificing some predictive power for presumptive interpretability. Here, we introduce the Feature Importance Ranking Measure (FIRM), which by retrospective analysis of arbitrary learning machines allows to achieve both excellent predictive performance and superior interpretation. In contrast to standard raw feature weighting, FIRM takes the underlying correlation structure of the features into account. Thereby, it is able to discover the most relevant features, even if their appearance in the training data is entirely prevented by noise. The desirable properties of FIRM are investigated analytically and illustrated in simulations.Comment: 15 pages, 3 figures. to appear in the Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 200

    On the Canonical Reduction of Spherically Symmetric Gravity

    Get PDF
    In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) spherically symmetric general relativity. The essential technical ingredient in Kuchar's analysis is a canonical transformation to a certain chart on the gravitational phase space which features the Schwarzschild mass parameter MSM_{S}, expressed in terms of what are essentially Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we discuss the geometric interpretation of Kuchar's canonical transformation in terms of the theory of quasilocal energy-momentum in general relativity given by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent boost to the rest frame," where the ``rest frame'' is defined by vanishing quasilocal momentum. Furthermore, our formalism is general enough to cover the case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing Kucha\v{r}'s original work for Schwarzschild black holes from the framework of hyperbolic geometry, we present new results concerning the canonical reduction of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure

    Slow relaxation to equipartition in spring-chain systems

    Get PDF
    In this study, one-dimensional systems of masses connected by springs, i.e., spring-chain systems, are investigated numerically. The average kinetic energy of chain-end particles of these systems is larger than that of other particles, which is similar to the behavior observed for systems made of masses connected by rigid links. The energetic motion of the end particles is, however, transient, and the system relaxes to thermal equilibrium after a while, where the average kinetic energy of each particle is the same, that is, equipartition of energy is achieved. This is in contrast to the case of systems made of masses connected by rigid links, where the energetic motion of the end particles is observed in equilibrium. The timescale of relaxation estimated by simulation increases rapidly with increasing spring constant. The timescale is also estimated using the Boltzmann-Jeans theory and is found to be in quite good agreement with that obtained by the simulation

    An AUC-based Permutation Variable Importance Measure for Random Forests

    Get PDF
    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html

    Virtual black hole phenomenology from 2d dilaton theories

    Get PDF
    Equipped with the tools of (spherically reduced) dilaton gravity in first order formulation and with the results for the lowest order S-matrix for s-wave gravitational scattering (P. Fischer, D. Grumiller, W. Kummer, and D. Vassilevich, gr-qc/0105034) new properties of the ensuing cross-section are discussed. We find CPT invariance, despite of the non-local nature of our effective theory and discover pseudo-self-similarity in its kinematic sector. After presenting the Carter-Penrose diagram for the corresponding virtual black hole geometry we encounter distributional contributions to its Ricci-scalar and a vanishing Einstein-Hilbert action for that configuration. Finally, a comparison is done between our (Minkowskian) virtual black hole and Hawking's (Euclidean) virtual black hole bubbles.Comment: 17 pages, 13 figure

    Quantum (in)stability of 2D charged dilaton black holes and 3D rotating black holes

    Full text link
    The quantum properties of charged black holes (BHs) in 2D dilaton-Maxwell gravity (spontaneously compactified from heterotic string) with NN dilaton coupled scalars are studied. We first investigate 2D BHs found by McGuigan, Nappi and Yost. Kaluza-Klein reduction of 3D gravity with minimal scalars leads also to 2D dilaton-Maxwell gravity with dilaton coupled scalars and the rotating BH solution found by Ba\~nados, Teitelboim and Zanelli (BTZ) which can be also described by 2D charged dilatonic BH. Evaluating the one-loop effective action for dilaton coupled scalars in large NN (and s-wave approximation for BTZ case), we show that quantum-corrected BHs may evaporate or else anti-evaporate similarly to 4D Nariai BH as is observed by Bousso and Hawking. Higher modes may cause the disintegration of BH in accordance with recent observation by Bousso.Comment: LaTeX file and ps files for figures, new section is added, title is change
    • 

    corecore