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Slow relaxation to equipartition in spring-chain

systems

Tetsuro Konishi1, Tatsuo Yanagita2

1 Department of Physics, Nagoya University, Nagoya 464-8602, Japan,
2 Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020,
Japan

Abstract. In this study, one-dimensional systems of masses connected by springs,
i.e., spring-chain systems, are investigated numerically. The average kinetic energy
of chain-end particles of these systems is larger than that of other particles, which is
similar to the behavior observed for systems made of masses connected by rigid links.
The energetic motion of the end particles is, however, transient, and the system relaxes
to thermal equilibrium after a while, where the average kinetic energy of each particle
is the same, that is, equipartition of energy is achieved. This is in contrast to the
case of systems made of masses connected by rigid links, where the energetic motion
of the end particles is observed in equilibrium. The timescale of relaxation estimated
by simulation increases rapidly with increasing spring constant. The timescale is also
estimated using the Boltzmann-Jeans theory and is found to be in quite good agreement
with that obtained by the simulation.

PACS numbers: 05.20.-y 05.45.-a
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1. Introduction

Constrained systems are those having constraints on their degrees of freedom. When

a constraint is imposed on spatial coordinates, the constraint is called a “holonomic

constraint”[1]. Constrained systems are useful and simple, because of which they are

widely used as model systems. An example of such a model system is a freely jointed

chain [2, 3, 4], which is a model composed of one-dimensional chain (1D) of N masses

such that the distances between adjacent masses are constant. The freely jointed chain

is known as a simplified model of polymers. In computational software packages such as

CHARMM [5] and AMBER [6] for molecular dynamics calculations, the SHAKE and

RATTLE algorithms enable one to treat model systems as constrained ones by setting

distances between atoms as constant. As a result, the computational task can be made

much easier, and then, physically important results can be obtained. In molecular

dynamics calculations, water molecules are often treated as having a fixed shape, where

the length of bonds between hydrogen and oxygen atoms is fixed [7]. In both cases, we

replace the bond between atoms with a rigid link when the frequency of bond vibration

is extremely high.

It is known that in a constrained system, the equipartition of energy occurs in a

somewhat complicated way, and the average kinetic energies of particles 〈1/2miv
2
i 〉 can

take different values for particles located at different places in the system [8]. In the

generalized form of equipartition [9, 10], what is equal among degrees of freedom is

not 〈1/2miv
2
i 〉 but 〈1/2pi

∂K
∂pi

〉, where pi is the momentum conjugate to the generalized

coordinate qi of the i’th degree of freedom, and K is the kinetic energy of the system.

In constrained systems, K depends on coordinates and pi is no longer equal to mivi;

therefore 1/2pi
∂K
∂pi

, whose average takes the same value for all i, is not equal to 1/2miv
2
i .

Recently, we found that for a chain-type system, termed a planar chain model,

the average kinetic energy of each particle differs systematically; that is, particles near

both the ends of the chain have relatively large average kinetic energies [3]. This model

consists of masses connected by rigid links; since the distances between adjacent masses

are fixed in this model, it is a constrained system. It is the constraint that induces

the nonuniformity of average kinetic energies. The abovementioned energetic motion

of end particles observed in the model would be useful in understanding the dynamical

behavior of chain-type systems such as polymers [11], DNAs, proteins [12], and some

artificial objects such as manipulator arms of spacecraft.

Thus far, we have described the behavior of constrained systems. However, strictly

speaking, a constrained system or rigid link does not exist in the real world. When the

potentials of a system are somewhat steep, i.e., spring constants are quite large and the

frequency of bond vibration is reasonably high, we approximate the bonds with rigid

links. A rigid link or holonomic constraint is an idealized limit of a stiff spring.

However, if we replace the rigid links with springs, say spring-chain model, the

usual expression of equipartition of energy, i.e., 〈1
2
miv

2
i 〉 = D

2
kBT , holds regardless

of the magnitude of the spring constant k, where D denotes the spatial dimension. In
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other words, although a spring-chain system, made by replacing rigid links in the planar

chain system with springs, appears to behave like the planar chain model when the

spring constants are large, the behavior of energetic motion of end particles cannot be

reproduced by applying equilibrium statistical mechanics to the model. Indeed, there are

several studies which discuss the difference between statistical behaviors of stiff spring

systems (“flexible constraint”) and rigid link systems (“rigid constraint”) [13, 14, 15, 16].

Then it would be interesting to know whether the large average kinetic energies of

end particles observed in the planar chain model can also be found in the real world or

whether it is an artifact observed only in mathematical models and is never observed

in the real world. If the former is true, then we can expect to observe an interesting

feature that the energy distribution of many-body systems shows nonuniform behavior.

Since it is natural to consider that the dynamical behavior of a stiff spring is similar

to that of a rigid link at least for a finite time, the solution to the problem will be the

knowledge of the relaxation properties to equilibrium.

With this background, the aim of this study is to examine the property of relaxation

to equipartition for the spring-chain system, particularly for a large value of the spring

constant k. We measure the relaxation time trelax and investigate its relation with

the spring constant k. Further, we estimate trelax by the Boltzmann-Jeans theory and

compared it with the value measured.

This paper is organized as follows. In Sec.II we introduce the model, the spring-

chain system. In Sec.III we briefly describe the method of numerical computation. The

results are shown in Sec.IV. The final section is devoted to the summary and discussion.

2. Model

We now introduce the spring-chain system. It is composed of N particles (masses)

connected by N − 1 massless springs. The masses can rotate smoothly on the xy-plane,

as shown in Fig. 1. The system is defined by the following Lagrangian L:

L =
N∑

i=1

mi

2

(
ẋ2

i + ẏ2
i

)
−

N−1∑
i=1

ki

2
{|−−→ri+1 −−→ri | − `i}2

− U({−→ri }) , (1)

where mi is the mass of the i’th particle, −→ri ≡ (xi, yi) represents the position of

the i’th particle, ki and `i are the spring constant and natural length of the i’th

spring, respectively. U is an external potential. In this paper we consider the case

of mi = m, ki = k, and `i = ` for all i. We set m = 1 and ` = 1. The spring-

chain model is a kind of beads-type models, which are used as models of polymer and

protein [17, 18, 19, 20, 21, 22].
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Figure 1. A schematic illustration of spring-chain model.

3. Method of Numerical Integration

We integrate the equation of motion of the model by a fourth-order symplectic integrator

that is the composition of three successive second-order symplectic integrators. External

potential [3] U(−→r ) = 0.01
∑Nwall

j=1

∣∣∣∣∣∣−→r −−→
R j

∣∣∣− a
∣∣∣−6

is applied in order to break the

rotational symmetry and thus prevent the conservation of angular momentum. Here

Nwall = 4, a = 4N`, ~Rj ≡ (R, 0), (0, R), (−R, 0), (0,−R), R ≡ N` +
√

a2 − N2`2. This

potential resembles the one used in dispersing billiards [23], where the systems does not

have any conserved quantities other than the total energy, and the orbit obtained from

long time simulation can be well approximated by microcanonical distribution.

The reason we need external potential U is explained as follows. If we set U ≡ 0 and

observe the system in the center of mass frame, angular momentum Lz of the system is

conserved because the system is invariant under arbitrary rotation in the xy plane. Then
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Figure 2. Power spectrum of x1(t) for 0 ≤ t ≤ 1330720. N = 6. k = 100. The blue
line represents an original power spectrum from a single orbit. The power spectrum
is computed from discrete time series of x1(ti) where ti = i∆t, ∆t = 10. The black
line represents moving-averaged data over 100 successive data points of the data of the
blue line.

the orbit of the system is constrained in the intersection of two hypersurfaces H = E

and Lz = const.. Hence the distribution of states generated by time series differs from

microcanonical distribution defined by one hypersurface H = E, because of additional

constraint Lz = const . On the other hand, if we have an external potential U which is

not axially symmetric, angular momentum is no longer conserved, and we can consider

that the numerically obtained orbit is approximated by microcanonical distribution.

Throughout this paper, the following parameters and initial condition are set

mi = m = 1, `i = ` = 1 for all i (2)

and

xi = i − (N + 1)/2, yi = 0 for all i, (3)

respectively. The values of system size and initial momentum for each simulation set

will be defined in the subsequent sections.

In Fig.2 we show a power spectrum of x1(t) for k = 100. Here we see a Lorentz-like

broad spectrum, and we can say that the system shows strongly chaotic motion.
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4. Result

Next, we briefly summarize the relation between our numerical simulation and thermal

equilibrium. Under most of the initial conditions considered for the present simulations,

the system undergoes chaotic motion. Since the model has no conserved quantities

other than the total energy, one may think that the states of the system attained in the

course of a long-duration are well approximated by a microcanonical distribution. In

that case, the distribution of the state of each particle in the chain can be approximated

by a canonical distribution at a certain temperature, by considering the other particles

in the chain as a heat bath. That is, the long-term average of kinetic energy of each

particle, Ki(t), is equal to thermal average 〈Ki〉. Then, according to the principle of

equipartition of energy, the average kinetic energy of each particle is the same:

Ki(t) ≡
1

t

∫ t

0

mi

2

(
ẋi(t

′)2 + ẏi(t
′)2
)
dt′

−→
t→∞

〈Ki〉 ≡
1

Z

∫
Ki exp (−βH) dpdq

= kBT , (4)

where Z ≡
∫

exp (−βH) dpdq, β ≡ 1/kBT , kB is the Boltzmann constant, and T

is the temperature. Since our aim is to investigate the property of relaxation to

equipartition, we define the following quantity in order to measure how close the system

is to equipartition:

∆(t) ≡ 1

N

N∑
i=1

[
Ki(t) −

(
1

N

N∑
i′=1

Ki′(t)

)]2

. (5)

If ∆(t) = 0, then Ki(t) = K0 for all i. Similar quantities have been used to measure

the degree of equipartition in studies on a supercooled liquid [24], self-gravitating

systems [25, 26, 27], and proteins [28].

Here we take the initial condition as

px
i = 0 (1 ≤ i ≤ N), py

1 = p0, py
i = −p0 (2 ≤ i ≤ N) (6)

and p0 = 0.1. This initial condition is compatible with rigid link system, as is explained

below. For rigid link system (planar chain), we have constraint defined by the following

relations:

gi({−→r }) ≡ 1

2
{|−−→ri+1 −−→ri | − `i}2 = 0 i = 1, 2, · · · , N − 1. (7)

Taking time derivative of the above equations induces relations between coordinates and

velocities as

grad g` · (
d

dt
−−→ri+1 −

d

dt
−→ri ) ∝ (−−→ri+1 −−→ri ) · (

d

dt
−−→ri+1 −

d

dt
−→ri ) = 0 . (8)

That is, relative position and relative velocity of adjacent masses should be

perpendicular to each other. It is clear that the initial position and momentum set

eq.(3) and (6) imposed for the spring-chain system satisfies eq.(8).
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Figure 3. Ki(t) vs. t for k = 104. N = 8. Plots are measured at 10 successive
times: t = 105 (blue circles), 2× 105 (red squares), 4× 105 (yellow diamonds), 8× 105

(green triangles), and 1.6× 106 (blue inverted triangles). The time step of integration
δt = 4 × 10−4. The initial conditions are xi = i − (N + 1)/2, yi = 0, px

i = 0 for
1 ≤ i ≤ N , and py

1 = 0.1, py
i = −0.1 (2 ≤ i ≤ N).

Figure 3 shows the time evolution of the profile of
{
Ki(t), i = 1, 2, · · · , N = 8

}
. It

is clearly observed that in the initial stage of the time evolution, the average kinetic

energy of all particles is not equal; rather, particles near both the ends of the chain have

a larger average Ki. The profile is similar to that of the rigid link, i.e., the planar chain

model [3]. Then, as time progresses, differences in average Ki among particles gradually

decrease and tend to zero, and equipartition is achieved. Figure 4 shows the relaxation

of ∆(t) [Eq. (5)] for the data considered in Fig. 3. We observe that the system relaxes

to equilibrium with the progress of time.

The physical process of relaxation can be understood by examining the kinetic

energy in greater detail. We rewrite the Hamiltonian as

H = Kvib(
−→̇
` ) + Krot(

−→̇
ϕ ) + Kint(

−→̇
` ,

−→̇
ϕ ) + U(−→r ) (9)

Kvib ≡
M

2

N−1∑
j,k=1

µ≤
min(j,k)µ

>
max(j,k)

˙̀
j
˙̀
k cos(ϕj − ϕk) , (10)

Krot ≡
M

2

N−1∑
j,k=1

µ≤
min(j,k)µ

>
max(j,k)`j`kϕ̇jϕ̇k cos(ϕj − ϕk) , (11)
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Figure 4. Time evolution of ∆(t) for k = 1 (blue circles), 10 (red squares), 104 (yellow
diamonds), and 105 (green triangles). The other parameters and initial conditions are
the same as those mentioned in the caption of Fig. 3. The dashed line represents
0.001/t.

Kint ≡ M
N−1∑
j,k=1

µ≤
min(j,k)µ

>
max(j,k)

˙̀
j`kϕ̇k sin(ϕj − ϕk) , (12)

where

M ≡
N∑

i=1

mi, µk ≡ mk

M
, µ≤

n ≡
n∑

k=1

µk , µ>
n ≡

N∑
k=n+1

µk . (13)

At the initial condition defined by eq.(6), we see that all of the kinetic energy is

given to Krot, and Kvib = 0 because `i = 0 for all i at t = 0.

Now we consider the time evolution. If equipartition is achieved, 〈Kvib〉 = 〈Krot〉,
because the model has the same number of springs and angles. Figure 5 shows the

temporal evolution of ∆(1)(t; τ) and Kvib(t; τ)/Krot(t; τ) for k = 10000. Here, the time

average with two arguments, f(t; τ), is defined as

f(t; τ) ≡ 1

τ

∫ t+τ

t

f(t′)dt′ , (14)

and

∆(1)(t; τ) ≡ 1

N

N∑
i=1

[
Ki(t; τ) −

(
1

N

N∑
i′=1

Ki′(t; τ)

)]2

. (15)
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Figure 5. Time evolution of ∆(1)(t; τ) (blue circles) and Kvib(t; τ)/Krot(t; τ)
Kvib/Krot (red squares). N = 8, K = 10000, and δt = 2 × 10−3. τ = 2 × 103.

The initial conditions are xi = i − (N + 1)/2, yi = 0, px
i = 0 for 1 ≤ i ≤ N , py

1 = 0.1,
and py

i = −0.1 (2 ≤ i ≤ 8) .

We find that the system relaxed to equipartition on a timescale similar to that on which

the rotational energy Krot transformed into vibrational energy Kvib.

As mentioned earlier, the aim of this study is to examine the property of relaxation

to equipartition of energy for the model expressed in Eq. (1). First, for each sample

orbit starting from different initial condition, we define the relaxation time t
(sample)
relax as

the time required for ∆(t) to decay below a critical value ∆0. We define the average

relaxation time over Nsample orbits as

trelax ≡ 1

Nsample

∑
sample

t
(sample)
relax . (16)

This time is a measure of the relaxation time to equipartition.

Figure 6 shows the plot of the dependence of trelax on the spring constant k. We

observe that as the stiffness of the spring increases, the relaxation time increases rapidly.

That is, systems with hard springs or a steep potential show rigid-like behavior of

energetic particles near the chainends for a very long time, as shown in Fig. 3, before

relaxing to equipartition.

Here, we mention a technical detail about the numerical integration used for

obtaining the plot in Fig. 6. With increasing spring constant k, the period of bond-

stretching vibration decreases in proportion to 1/
√

k. Therefore, for large values of k, the
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Figure 6. k dependence of average relaxation time trelax. At each k value, 15
samples are taken. The system size is N = 6. Threshold value ∆0 = 10−7. The
time step δt of integration is scaled as δt = 0.125 ×

√
10/

√
k. The initial conditions

are xi = i − (N + 1)/2, yi = 0, px
i = ξ

(x)
i for 1 ≤ i ≤ N , and py

1 = 0.1 + ξ
(y)
1 ,

py
i = ξ

(y)
i (2 ≤ i ≤ N), where ξ

(x)
i and ξ

(y)
i (i = 1, · · · , N) are independent

random numbers uniformly distributed over the interval [0, 10−8]. The error bars
represent standard deviations of t

(sample)
relax for 15 samples. The dashed line shows

trelax = 5.52 × 104 exp(0.415
√

k) obtained by fitting.

magnitude of the time step of numerical integration should be reduced. We confirmed

that trelax converges at δt = 0.125 for k = 10. Thus, we used δt = 0.125 ×
√

10/
√

k for

each k.

On changing the initial conditions, the relaxation time t
(sample)
relax changes, and we

obtain a distribution of t
(sample)
relax , denoted as P (trelax). Figure 7 shows the distribution

of trelax for k = 20 and k = 100. For both cases, the histograms show exponential decay

expressed as

P (trelax) ∝ exp(−αtrelax) , (17)

which suggests the existence of a characteristic timescale for the relaxation.

Next, we analyze the results of the abovementioned calculation using the concept

of the Boltzmann-Jeans theory (also known as Boltzmann-Jeans conjecture) [29, 30, 31,

32, 33, 34]. The essence of this theory is roughly described as follows. ( For a detailed

description of the theory please refer to [29]. ) Suppose we have a system described by
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Figure 7. Distribution of trelax for k = 100 (blue circles) and k = 200 (red
squares). The initial conditions are xi = i − (N + 1)/2, yi = 0, px

i = ξ
(x)
i for

1 ≤ i ≤ N , and py
1 = 0.1 + ξ

(y)
1 , py

i = ξ
(y)
i (2 ≤ i ≤ N), where ξ

(x)
i and ξ

(y)
i

(i = 1, · · · , N) are independent random numbers uniformly distributed over the interval
[0, 10−8]. For each value of k, the numbers of samples are 200 and the system size is
N = 6. Both distributions are shown on a semi-log scale. The dashed lines show
P (trelax) = c exp(−αtrelax). For k = 100, c = 0.544 and α = 5.39×10−6. For k = 200,
c = 0.271 and α = 1.54 × 10−6.

a Hamiltonian, which has two subsystems Hf and Hs, their typical time scale being τf

and τs, respectively. Here, subscripts f and s denote “fast” and “slow,” respectively.

Let us call Hf and Hs as a “fast subsystem” and “slow subsystem,” respectively. If

the timescales of the fast and slow subsystems differ greatly, i.e., τs/τf � 1, then the

timescale for the occurrence of energy exchange between these two subsystems is on the

order of

texch & exp(c
τs

τf

) . (18)

Outline of the derivation of the relation (18) is sketched as follows ( See [29] for details.);

Let us write

H = Hfast + Hslow + Hint ,

where H is the total hamiltonian, Hfast, Hslow represents fast and slow subsystems, and

Hint represents interaction between fast and slow subsystems. Hfast is a set of harmonic
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oscillators with angular frequency ω : Hfast = 1
2

∑ν
i=1 P 2

i + ω2X2
i . Here, Xi and Pi are

a coordinate and its conjugate momentum of the i’th harmonic oscillators, respectively.

In our case Hfast, Hslow and Hint is related to Kvib, Krot and Kint in Eqs.(10), (11)

and (12). Exchange of energy is measured by the change of the value of Hfast by the

equation

d

dt
Hfast = {Hfast, H}P.B. , (19)

where the symbol {, }P.B. represents Poisson bracket. By canonical change of variables

one can separate terms which contribute the right hand side of Eq.(19). Evaluating the

magnitude of the contributing terms, one obtains the estimate (18).

Now one can see from Eq. (18) that energy exchange occurs after a long time. In

the case of the spring-chain system [Eq. (1)] with a large spring constant k, the fast

and slow subsystems correspond to bond vibration and relative rotation, respectively.

Since the typical timescale of bond vibration is on the order of 2π
√

m/k and that of

rotation is assumed to be constant, we have

texch ∼ exp(c · 1/
√

m

k
) = exp(c′

√
k) . (20)

Since the relaxation to equipartition occurs by energy transfer from rotation to vibration

(as we observed before), we can consider that texch mentioned above is essentially the

same as the relaxation time trelax:

trelax ∼ exp(c′
√

k) . (21)

Now, we examine whether trelax obtained by the simulation obeys Eq. (21). The

result is already shown in Fig. 6. Log(trelax) is proportional to
√

k; therefore the

interpretation by the Boltzmann-Jeans theory is appropriate.

This theory can also be used for interpreting the histogram of t
(sample)
relax . Since trelax

is defined from the average of a number of samples, we have

trelax =

∫ ∞

0

t′relaxP (t′relax)dt′relax , (22)

where P (t) is the distribution of t
(sample)
relax . If we adopt the exponential form for the

distribution P [Eq. (17)], then

trelax =
1

α
, (23)

where α is the coefficient that appears in Eq. (17).

Combining Eqs. (21) and (23), the relation between the coefficient α and the spring

constant should be

α ∝ exp(−c′
√

k) . (24)

A comparison between the estimation [Eq. (24)] and data is shown in Figure 8,

from which we find that they are in good agreement. Thus, the fact that relaxation to

equilibrium takes quite a long time to occur can be interpreted as the outcome of the

Boltzmann-Jeans theory.
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Figure 8. Plot of α vs k, obtained from 300 samples. N = 6. The initial conditions
are xi = i − (N + 1)/2, yi = 0, px

i = ξ
(x)
i for 1 ≤ i ≤ N , and py

1 = 0.1 + ξ
(y)
1 ,

py
i = ξ

(y)
i (2 ≤ i ≤ N), where ξ

(x)
i and ξ

(y)
i (i = 1, · · · , N) are independent random

numbers uniformly distributed over the interval [0, 10−8]. The dashed line shows
log α = c1 − c2

√
k, where c1 = −3.93 and c2 = 0.124.

5. Summary and Discussion

In this paper, we have numerically shown the occurrence of energetic motion of end

particles for a 1D chain of point masses connected by hard springs. The timescale

at which the energetic motion is observed depends on the spring constant, and this

timescale lengthens with increasing the spring constant. Relaxation to equilibrium

occurs as rotational kinetic energy is converted into vibrational kinetic energy.

The timescale of relaxation is estimated using the Boltzmann-Jeans theory, which

describes the energy exchange rate in a system in which fast and slow motions coexist.

In the case of our model, fast motion corresponds to bond vibration by a hard spring

and slow motion corresponds to rotation and deformation of the chain. The result of

our numerics is that the timescale is estimated as an exponential of the square root of

the spring constant, which coincides well with simulation data.

The energetic motion of end particles is also observed in other systems, e.g., a

planar chain system [3] and multiple pendulum [35, 36, 37]. These systems consist of

masses connected by rigid links, and therefore, they are constrained systems. If we

consider a rigid link as a limiting case of a hard spring when the spring constant k is
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large (k → ∞), then the spring-chain system examined in this study becomes a planar

chain system when k → ∞. Therefore, it is natural that the spatial energy distribution

of the spring-chain system considered in this study resembles those of systems with rigid

links.

However, the equilibrium behaviors of spring-chain system and rigid-link chain

system are quite different. In the spring-chain system, equipartition achieved is of the

usual form; that is, the average kinetic energy of each particle is the same, regardless of

the magnitude of k. Then, chain-end particles in thermal equilibrium should not exhibit

the energetic behavior. In contrast, in the rigid-link-chain system, chain-end particles

behave energetically even in thermal equilibrium [3]. The energetic behavior of end

particles in the spring-chain system is a transient behavior before the system relaxes

to thermal equilibrium. What is important here is that the relaxation time increases

with increasing the spring constant k and that the relaxation time eventually diverges

at k → ∞. Therefore, a large k value provides a good opportunity to observe energetic

behavior in spring-chain systems.

The relaxation time to equipartition changes if we change the initial conditions.

We found that the the relaxation time is distributed according to the exponential form

for large relaxation time. This implies that relaxation occurs almost randomly. That is,

the system moves on the energy surface in a random way and happens to encounter at

which the system can divert toward the equipartition state. This situation is in contrast

to the process of slow dynamics often observed in many Hamiltonian systems, where

the relaxation time is often distributed according to the power law.

Slow relaxation is often observed in Hamiltonian systems, and in most cases, it is

accompanied by strong temporal correlation caused by sticky or stagnant motion around

KAM tori (regular orbits) and their remnants and 1/f -type fluctuations. Such slow

relaxation is observed in area-preserving mappings and some other high-dimensional

systems [38, 39, 40, 41, 42, 43, 44, 45, 46]. Such slow relaxation is explained by a

hierarchical structure generally found in nearly integrable Hamiltonian systems. In

this sense, it is quite common to find slow relaxation in Hamiltonian systems, if the

Hamiltonian is nearly integrable.

The spring-chain model is composed of masses connected by springs; hence one

may think that the model is similar to the Fermi-Pasta-Ulam model, which is a well-

known nearly integrable Hamiltonian system [47]. However, the spring-chain model

considered in this study is not nearly integrable, as explained below. Fig.2 shows the

power spectrum of coordinate variable x1(t) of the spring-chain system. We see that

the power spectrum shows Lorentzian-type dependence on frequency. It indicates that

the system shows strongly chaotic motion. On the other hand, when the system is

nearly integrable, the power spectrum often shows 1/f -type behavior. Hence we see

that the spring-chain system in this paper is not a nearly integrable system. Moreover

we can say that the slow relaxation observed for the large value of k is not caused by

the near-integrability or long-time correlation of the system.

In addition, the systems which show slow relaxation in real world are not always
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nearly integrable. In contrast, the Boltzmann-Jeans theory is still applicable to

Hamiltonian systems that are not nearly integrable and is able to explain the slow

relaxation. Similar to the research by Shudo et al. [48], the result of our study also

implies that the Boltzmann-Jeans theory can describe slow relaxation in more general

systems other than the nearly integrable ones.

We used the Boltzmann-Jeans theory [29, 30, 31, 32, 33, 34] to estimate the

relaxation time. Although the concept of the theory dates back to the 19th

century [49, 50, 51], its importance is not very familiar and not many examples of

the application of this theory have been demonstrated [48, 52, 53, 54, 55, 56]. Because

the results of this study show that there is good agreement between numerical data

and theoretical estimation, this study can be a good example of the applicability of the

Boltzmann-Jeans theory.

In this study, we showed that chain-end particles behave energetically even for

systems with a finite but large spring constant. This implies that similar behavior

can be observed for natural chain-type systems that are not made of rigid links but

whose intrachain potential between elements is very steep. The results of this study

are expected to have many useful applications to polymers, proteins and some artificial

objects.
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