25 research outputs found

    Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis

    Get PDF
    This deposit is composed by the main article plus the supplementary materials of the publication.Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.Academy of Sciences of the Czech Republic grant: (Purkyne Fellowship); EMBO grant: (Installation Grant no. 2329); Ministry of Education, Youth and Sports of the Czech Republic grants: (projects no. LK11206 and LO1302); Marie Curie Career Integration grant: (project no. 304154); National Subvention for Development of Research Organisations grant: (RVO: 61388963); Institute of Organic Chemistry and Biochemistry; Fundação Calouste Gulbenkian; Worldwide Cancer Research grant: (14–1289); Marie Curie Career Integration grant: (project no. 618769); Fundação para a Ciência e Tecnologica (FCT, PTDC/BEX-BCM/3015/2014); European Crohn’s and Colitis organization (ECCO); COST BM1406; Wellcome Trust grant: (101035/Z/13/Z); Medical Research Council grant: (programme number MC_U105178780).info:eu-repo/semantics/publishedVersio

    Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα

    Get PDF
    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes.Baden-Württemberg Stiftung; Network of Aging Research (NAR, University of Heidelberg); Deutsche Forschungsgemeinschaft grant: (SFB 1036, TP 12); EMBO Installation Grant number: (2329); Ministry of Education, Youth and Sports of the Czech Republic projects: (LK11206, LO1302); Medical Research Council programme number: (U105178780); Boehringer-Ingelheim

    iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE

    Get PDF
    The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation.info:eu-repo/semantics/publishedVersio

    Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis

    Get PDF
    Objective: The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis.Methods: We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology.Results: ADAM17adipoq-creD/D mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism.Conclusions: Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.(c) 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms

    No full text
    Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution

    Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes

    No full text
    Although activity-based protein profiling (ABPP) has been used to study a variety of enzyme classes, its application to intramembrane proteases is still in its infancy. Intramembrane proteolysis is an important biochemical mechanism for activating proteins residing within the membrane in a dormant state. Rhomboid proteases (intramembrane serine proteases) are embedded in the lipid bilayers of membranes and occur in all phylogenetic domains. The study of purified rhomboid proteases has mainly been performed in detergent micelle environments. Here we report on the reconstitution of rhomboids in liposomes. Using ABPP, we have been able to detect active rhomboids in large and giant unilamellar vesicles. We have found that the inhibitor profiles of rhomboids in micelles and liposomes are similar, thus validating previous inhibitor screenings. Moreover, fluorescence microscopy experiments on the liposomes constitute the first steps towards activity-based imaging of rhomboid proteases in membrane environments.status: publishe

    Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases

    No full text
    Rhomboid proteases form one of the most widespread intramembrane protease families. They have been implicated in variety of human diseases. The currently reported rhomboid inhibitors display some selectivity, but their construction involves multistep synthesis protocols. Here, we report benzoxazin-4-ones as novel inhibitors of rhomboid proteases with a covalent, but slow reversible inhibition mechanism. Benzoxazin-4-ones can be synthesized from anthranilic acid derivatives in a one-step synthesis, making them easily accessible. We demonstrate that an alkoxy substituent at the 2-position is crucial for potency and results in low micromolar inhibitors of rhomboid proteases. Hence, we expect that these compounds will allow rapid synthesis and optimization of inhibitors of rhomboids from different organisms.status: accepte

    Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase

    No full text
    The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease
    corecore