394 research outputs found
Coating thermal noise for arbitrary shaped beams
Advanced LIGO's sensitivity will be limited by coating noise. Though this
noise depends on beam shape, and though nongaussian beams are being seriously
considered for advanced LIGO, no published analysis exists to compare the
quantitative thermal noise improvement alternate beams offer. In this paper, we
derive and discuss a simple integral which completely characterizes the
dependence of coating thermal noise on shape. The derivation used applies
equally well, with minor modifications, to all other forms of thermal noise in
the low-frequency limit.Comment: 3 pages. Originally performed in August 2004. Submitted to CQG. (v2)
: Corrections from referee and other
The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers
In second-generation, ground-based interferometric gravitational-wave
detectors such as Advanced LIGO, the dominant noise at frequencies
Hz to Hz is expected to be due to thermal fluctuations in the
mirrors' substrates and coatings which induce random fluctuations in the shape
of the mirror face. The laser-light beam averages over these fluctuations; the
larger the beam and the flatter its light-power distribution, the better the
averaging and the lower the resulting thermal noise. In semi-infinite mirrors,
scaling laws for the influence of beam shape on the four dominant types of
thermal noise (coating Brownian, coating thermoelastic, substrate Brownian, and
substrate thermoelastic) have been suggested by various researchers and derived
with varying degrees of rigour. Because these scaling laws are important tools
for current research on optimizing the beam shape, it is important to firm up
our understanding of them. This paper (1) gives a summary of the prior work and
of gaps in the prior analyses, (2) gives a unified and rigorous derivation of
all four scaling laws, and (3) explores, relying on work by J. Agresti,
deviations from the scaling laws due to finite mirror size.Comment: 25 pages, 10 figures, submitted to Class. Quantum Gra
Sensitivity Studies for Third-Generation Gravitational Wave Observatories
Advanced gravitational wave detectors, currently under construction, are
expected to directly observe gravitational wave signals of astrophysical
origin. The Einstein Telescope, a third-generation gravitational wave detector,
has been proposed in order to fully open up the emerging field of gravitational
wave astronomy. In this article we describe sensitivity models for the Einstein
Telescope and investigate potential limits imposed by fundamental noise
sources. A special focus is set on evaluating the frequency band below 10Hz
where a complex mixture of seismic, gravity gradient, suspension thermal and
radiation pressure noise dominates. We develop the most accurate sensitivity
model, referred to as ET-D, for a third-generation detector so far, including
the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture
Scientific Potential of Einstein Telescope
Einstein gravitational-wave Telescope (ET) is a design study funded by the
European Commission to explore the technological challenges of and scientific
benefits from building a third generation gravitational wave detector. The
three-year study, which concluded earlier this year, has formulated the
conceptual design of an observatory that can support the implementation of new
technology for the next two to three decades. The goal of this talk is to
introduce the audience to the overall aims and objectives of the project and to
enumerate ET's potential to influence our understanding of fundamental physics,
astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte
The next detectors for gravitational wave astronomy
This paper focuses on the next detectors for gravitational wave astronomy
which will be required after the current ground based detectors have completed
their initial observations, and probably achieved the first direct detection of
gravitational waves. The next detectors will need to have greater sensitivity,
while also enabling the world array of detectors to have improved angular
resolution to allow localisation of signal sources. Sect. 1 of this paper
begins by reviewing proposals for the next ground based detectors, and presents
an analysis of the sensitivity of an 8 km armlength detector, which is proposed
as a safe and cost-effective means to attain a 4-fold improvement in
sensitivity. The scientific benefits of creating a pair of such detectors in
China and Australia is emphasised. Sect. 2 of this paper discusses the high
performance suspension systems for test masses that will be an essential
component for future detectors, while sect. 3 discusses solutions to the
problem of Newtonian noise which arise from fluctuations in gravity gradient
forces acting on test masses. Such gravitational perturbations cannot be
shielded, and set limits to low frequency sensitivity unless measured and
suppressed. Sects. 4 and 5 address critical operational technologies that will
be ongoing issues in future detectors. Sect. 4 addresses the design of thermal
compensation systems needed in all high optical power interferometers operating
at room temperature. Parametric instability control is addressed in sect. 5.
Only recently proven to occur in Advanced LIGO, parametric instability
phenomenon brings both risks and opportunities for future detectors. The path
to future enhancements of detectors will come from quantum measurement
technologies. Sect. 6 focuses on the use of optomechanical devices for
obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum
measurement options
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
- …