393 research outputs found

    Coating thermal noise for arbitrary shaped beams

    Get PDF
    Advanced LIGO's sensitivity will be limited by coating noise. Though this noise depends on beam shape, and though nongaussian beams are being seriously considered for advanced LIGO, no published analysis exists to compare the quantitative thermal noise improvement alternate beams offer. In this paper, we derive and discuss a simple integral which completely characterizes the dependence of coating thermal noise on shape. The derivation used applies equally well, with minor modifications, to all other forms of thermal noise in the low-frequency limit.Comment: 3 pages. Originally performed in August 2004. Submitted to CQG. (v2) : Corrections from referee and other

    The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers

    Get PDF
    In second-generation, ground-based interferometric gravitational-wave detectors such as Advanced LIGO, the dominant noise at frequencies f∼40f \sim 40 Hz to ∼200\sim 200 Hz is expected to be due to thermal fluctuations in the mirrors' substrates and coatings which induce random fluctuations in the shape of the mirror face. The laser-light beam averages over these fluctuations; the larger the beam and the flatter its light-power distribution, the better the averaging and the lower the resulting thermal noise. In semi-infinite mirrors, scaling laws for the influence of beam shape on the four dominant types of thermal noise (coating Brownian, coating thermoelastic, substrate Brownian, and substrate thermoelastic) have been suggested by various researchers and derived with varying degrees of rigour. Because these scaling laws are important tools for current research on optimizing the beam shape, it is important to firm up our understanding of them. This paper (1) gives a summary of the prior work and of gaps in the prior analyses, (2) gives a unified and rigorous derivation of all four scaling laws, and (3) explores, relying on work by J. Agresti, deviations from the scaling laws due to finite mirror size.Comment: 25 pages, 10 figures, submitted to Class. Quantum Gra

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
    • …
    corecore