In second-generation, ground-based interferometric gravitational-wave
detectors such as Advanced LIGO, the dominant noise at frequencies f∼40
Hz to ∼200 Hz is expected to be due to thermal fluctuations in the
mirrors' substrates and coatings which induce random fluctuations in the shape
of the mirror face. The laser-light beam averages over these fluctuations; the
larger the beam and the flatter its light-power distribution, the better the
averaging and the lower the resulting thermal noise. In semi-infinite mirrors,
scaling laws for the influence of beam shape on the four dominant types of
thermal noise (coating Brownian, coating thermoelastic, substrate Brownian, and
substrate thermoelastic) have been suggested by various researchers and derived
with varying degrees of rigour. Because these scaling laws are important tools
for current research on optimizing the beam shape, it is important to firm up
our understanding of them. This paper (1) gives a summary of the prior work and
of gaps in the prior analyses, (2) gives a unified and rigorous derivation of
all four scaling laws, and (3) explores, relying on work by J. Agresti,
deviations from the scaling laws due to finite mirror size.Comment: 25 pages, 10 figures, submitted to Class. Quantum Gra