7 research outputs found

    Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media

    Get PDF
    Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on–off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids

    Micromotor-mediated sperm constrictions for improved swimming performance

    Get PDF
    Sperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell’s motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors

    Modeling of Spermbots in a Viscous Colloidal Suspension

    Get PDF
    Spermbots are biohybrid micromachines consisting of single sperm cells captured in artificial magnetic microstructures, and have the potential to act as autonomous tools for minimally invasive medicines and in diverse in vivo applications. This work investigates the hydrodynamic effects of the spermbots in a heterogeneous viscous medium similar to environments encountered in vivo. The propulsion of the spermbots is simulated using a numerical model based on the method of regularized Stokeslets for computing Stokes flows in the presence of immersed obstacles. It is shown that the concentration and size of these obstacles create a pressure gradient along the propulsion axis of the spermbot; hence they influence its effective net motion. In particular, the simulation results herein suggest that the forward and lateral swimming speeds of the spermbot increase with the concentration of the immersed obstacles and decrease with their size
    corecore