29 research outputs found

    MIRACAL: A mission radiation calculation program for analysis of lunar and interplanetary missions

    Get PDF
    A computational procedure and data base are developed for manned space exploration missions for which estimates are made for the energetic particle fluences encountered and the resulting dose equivalent incurred. The data base includes the following options: statistical or continuum model for ordinary solar proton events, selection of up to six large proton flare spectra, and galactic cosmic ray fluxes for elemental nuclei of charge numbers 1 through 92. The program requires an input trajectory definition information and specifications of optional parameters, which include desired spectral data and nominal shield thickness. The procedure may be implemented as an independent program or as a subroutine in trajectory codes. This code should be most useful in mission optimization and selection studies for which radiation exposure is of special importance

    SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    Get PDF
    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1

    Aeroassist flight experiment guidance Quiet Time

    Get PDF
    The science experiments for the Aeroassist Flight Experiment (AFE) will be greatly enhanced by taking measurements with no Reaction Control System (RCS) contamination just before perigee. Methods of modifying the AFE guidance to accomplish this are discussed. Several methods that could give up to 30 seconds of quiet time were investigated and the results of these guidance modifications shown. A 20 second quiet time is definitely possible and a 30 second quiet time may be possible if the guidance can be inactive past perigee. Some of the most significant being the criterion for determining if the mission is threatened. A limited follow-on test program is outlined

    Huygens Titan Probe Trajectory Reconstruction Using Traditional Methods and the Program to Optimize Simulated Trajectories II

    Get PDF
    On January 14, 2005, ESA's Huygens probe separated from NASA's Cassini spacecraft, entered the Titan atmosphere and landed on its surface. As part of NASA Engineering Safety Center Independent Technical Assessment of the Huygens entry, descent, and landing, and an agreement with ESA, NASA provided results of all EDL analyses and associated findings to the Huygens project team prior to probe entry. In return, NASA was provided the flight data from the probe so that trajectory reconstruction could be done and simulation models assessed. Trajectory reconstruction of the Huygens entry probe at Titan was accomplished using two independent approaches: a traditional method and a POST2-based method. Results from both approaches are discussed in this paper

    Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    Get PDF
    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume

    LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses

    Get PDF
    The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery

    Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    Get PDF
    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015
    corecore