FINAL REPORT FOR THE UNMANNED MULTIPLE EXPLORATORY PROBE SYSTEM (MEPS) FOR MARS OBSERVATION

Volume II. Calculations and Derivations

Abstract

A design project by students in the Department of Aerospace Engineering at Auburn University, Auburn, Alabama, under the sponsorship of NASA/USRA Advanced Design Program.

Auburn University
Auburn, Alabama
June, 1988

The following eeniors contributed to the MEPS design team:

Daniel E. Adams	Propulaion Syatems Aerobraking System
Christopher M. Crumbly	Propulaion Syatems Structural Analyais
Steve E. Delp	Guidance and Control
Michelle A. Guidry	Surface Rover Syatema Surface Laboratory
Michael E. Lisano	Mara Lander Systems Sample Return Vehicle Surface Laboratory
James D. Packard	Command Information Center Trajectory Analyais Observation Satellite System Aerobraking System
Scott A. Striepe	Structural Analysis (NASTRAN)

ABSTRACT

This volume of the final report on the unmenned Multiple Exploratory Probe Syaten (MEPS) detaile al calculatione, derivatione, enalyses, and computer programe that support the information presented in the firet volume.

TABLE OF CONTENTS
Titie Page
Abatract 11
Liat of Symbola iv
Introduction 1
Structural Masa Calculation 2
Propoaed Strength Analyeis 5
Analysis of Earth-Mara Trajectory 7
Propellant Analyais for the
Secondary Propulaion Symtem 12
Analyeis of the Main Propulaion Syatem 17
Aerobrake Analyme 24
Derivatione for the Aerobraking Program 28
Analyeie for the Obeervation Satellite 31
Calculation of Approximate Mase of Mars Lander 34
List of References 42
Appendix A (Computer Program for the Aerobraking Analysis) 43
Appendix B (Optimization of Propellant Mass of a Solid-Propellant Rocket) 51
Appendix C (Calculation of Stagnation Temperature on Mars Lander) 64
Appendix D (Optimization of Recovery Syatem Mase For Mars Landers) 67

LIST OF SYMBOLS

Symbol	Description	Units
A	Area of the Aerobrake	ft^{2}
A ${ }_{\text {a }}$	Area of the Solar Array Panel	$f t^{2}$
a	Acceleration	ft/sec ${ }^{\text {2 }}$
-	Length of the Semi-Major Axim	ft
a	Length of the Semi-Major Axis of an Elliptic Tranafer Orbit	ft
b	Length of the Semi-Minor Axis	ft
C.	Drag Coefficient	--
C.	Effective Exhaust Velocity	ft/sec
c	Chord of an Are	ft
d	Diameter of Propellant Tank	ft
d	Distance from Center of Mars to x-Position of Intersection Points (Orbit and Atmosphere)	ft
-	Orbit Eccentricity	--
F	Force	1bf
F	Sum of Design Factors	--
g.	Gravity of Earth	ft/seca
h	Length of Cylindrical Tank	It
Isp	Specific Thruat	mec
ℓ	Length of Cylindrical tank	$f t$
M	Total Vehicle Mass	1 bm
M	Vehicle Mase Prior to Propulsive Burn	1bm

LIST OF SYMBOLS (continued)

Symbol	Description	Unite
M.	Vehicle Mame Prior to Propuleive Burn	1 bm
MLne	Mases of Liquid Hydrogen	1bm
MLee	Mass of Liquid Oxygen	1bm
Mnnn	Mase of Monomethyl Hydrazine	1 bm
Mneas	Mase of Mitrogen Textroxide	1 bm
$M_{\text {P }}$	Propellant Mase	1bm
m	Mase	1bm
n	Number of Engine Stages	1bm
O/F	Oxidizer/Fuel Ratio	---
P.	Available Pover	w
p	Semi-latus Rectum	$f t$
$\dot{q}_{\text {na }}$	Radiative Heat Flux from Air to Body	$\frac{B t u}{f t^{2} \cdot \sec }$
$\dot{\text { q.en }}$ ¢	Convective Heat Flux from Air to Body	$\frac{B t u}{f t^{2} \cdot \sec }$
R	Radius of a Sphere or Circle	ft
r	Radius of Orbit	$f t$
r.	Apoapaie Length	$f t$
re	Circular Orbit Radius Folloving Transfer	ft
r_{1}	Circular Orbit Radius Prior to Tranafer	ft
\underline{r}	Periapmis Length	$f t$
$r_{\text {© }}$	Distance From Sun to Earth	$f t$

LIST OF gYMBOLS (continued)

Symbol	Description	Units
58	Dietance From Sun to Mars	ft
5	Solar intensity at Mars	$n W / i n^{2}$
E	Segment Length	ft
T	Thrust	1bf
T.	Temperature at the Stagnation Point of the Body	Rankine
t	Duration of Time for Engine Burn	sec
u_{∞}	Freestream Velocity	ft/sec
v	Orbit Velocity	$f t / 8 e c$
V_{0} 。	Burn-out Velocity	It/sec
Verr	Velocity at Periapsis	ft/sec
V. - ¢	Velocity of Spacecraft Relative to Earth	ft/sec
V. - '0	Velocity of Spacecraft Relative to Mars	ft/sec
V. - ©	Velocity of Spacecraft Relative to the Sun	ft/sec
$\boldsymbol{V}_{\boldsymbol{\epsilon}}$	Velocity of the Earth Relative to the Sun	ft/sec
V_{δ}	Velocity of Mars Relative to the Sun	ft/sec
\mathbf{V}_{∞}	Hyperbolic Excess Speed	ft/sec
ΔV	Propulaive Burn	ft/bec
\forall	Volume	$f t^{2}$
HuE	Volume of Liquid Hydrogen	$\mathrm{ft}^{\mathbf{3}}$

LIST OF SYMBOLS (continued)

Symbol	Demeription	Units
+60e	Volume of Liquid Oxygen	ft^{2}
Fomon	Volume of Monomethyl Hydrazine	(t3
+ruces	Volume of Nitrogen Textroxide	ft
$\boldsymbol{\alpha}$	Angle of Attack	degrees
Γ	Angle between sun'e rays and the normal to the panel	degrees
Δ	Sweep Angle of Wing Leading Edge	degrees
8	Deadveight Ratio	---
E	Emiesivity of the Fluid	---
η	Efficiency of the Solar Array Panel	percent
θ	Angle between radil	degrees
9v	Cone Half-angle	degrees
λ	Payload Ratio	---
${ }^{+(1)}$	Gravitational Parameter for the Earth	It ${ }^{\text {/ }} \mathrm{EEC}^{2}$
18	Gravitational Parameter for Mars	$f t^{2} / \sec ^{2}$
$\mu_{\text {© }}$	Gravitational Parameter for the Sun	ft3/Esc ${ }^{2}$
ν_{0}	Argument of Periepsis	degreez
ρ_{0}	Freestream Density	Elug/ft ${ }^{\text {a }}$
$\rho \mathrm{Lu}=$	Density of Liquid Hydrogen	1bm/fta
Plee	Deneity of Liquid Oxygen	$1 \mathrm{bm} / \mathrm{ft}^{2}$

LIST OF SYMBOLS (continued)

Symbol	Description	Unitg
σ \%	Stefan-Boltzman Constant	BTU
7	Period of an Orbit	nours
TEn	Period of the Earth-Mars Tranafer Orbit	hours

INTRODUCTIOA

In Volume One of the report on the Multiple Exploratory Probe Syatem (MEPS) the final deaign ia presented. However, in moat casea the reasoning or rationale behind many of the deaign decisions are not given to the reader. Volume Tvo alleviates thia problem by preaenting calculationa, derivations, computer programa, and additional argumenta for the final deaign.

Several areas are discuased in thia volume. First, the atructural masa calculation and the atructural analyais are preaented. The calculation of the propulaive burne for the Earth-Mars tranefer are ghown, ae vell as the burne required for the aerobraking and the eatellite. The aecondary and main propulsion eysteme are studied to obtain the mase of propellant (oxidizer and fuel) required for the entire trip and the aize of the propellant tanks engine analyais is also presented in more detail in this volume. The necessary equations for the eerobraking program are derived, and the lander system is analyzed for determination of maes and atagnation temperature. In addition the recovery system is optimized. Appendices present various programs and mupplemental plots.

structural mass calculation

The total etructural mase vas calculated by summing the mase of each component of the structural gyatem. The atructural masa vill be divided into atringera, bulkheads, the cylindrical ahelle, the cape on the ende of the modules, and the connectora. Aluminum vill be used for the atructural material (specific weight $\left.=173.4 \mathrm{lb} / \mathrm{ft}^{2}\right)$.

Stringers

There are 36 longitudinal etringers arranged circumferentially along the length of each module. Each etringer is asamed to have a cross-sectional ares of $1 \mathrm{in}^{2}=0.006944 \mathrm{ft}^{2}$. Therefore, the total etringer mase is $36 \times($ module length $) \times\left(0.006944 \mathrm{ft}^{2}\right) \times\left(173.4 \mathrm{lbm} / \mathrm{ft}^{3}\right)$ maen $(1 \mathrm{bm})=43.365 \times$ length

Bulkhead료

The bulkheads are I-beams located along the interior circumference. The crosesectional area of this beam in 1.25 in $^{2}=$ $0.008681 \mathrm{ft}^{2}$. For the mass of each bulkhead, $(2 \cdot \pi) \times(12.5 \mathrm{ft}) \times\left(0.008681 \mathrm{ft}^{2}\right) \times\left(173.4 \mathrm{lbm} / \mathrm{ft}^{2}\right)$ mase $=118.261$ lbm (per bulkhead)

The (2.n•12.S $f t)$ term is the circumference of the bulkhead, where 12.5 ft is the radius of the module.

Cylindricel Shelle

The mtructural mass of the cylinder obviously depends on the length of the module. Using a thickness of $1 / 4 \mathrm{in}(.020833 \mathrm{ft})$, $(2 \cdot \pi \cdot 12.5 \mathrm{ft}) \times(0.020833 \mathrm{ft}) \times(173.4 \mathrm{lbm/ft}) \times$ length masa (lbm) $=283.83 \times$ length

End Caps on Cylinder:

The end cap is a plate modelied on the end of the module, and two caps are designed for each module. Using the same thickneas as the cylindrical shells (. 020833 ft), $\left.2\left[\pi \cdot(12.5 f t)^{2} \times(0.020833 \mathrm{ft}) \times(173.4 \mathrm{lbm/ft})^{3}\right)\right]$ maตะ $=3547.981 \mathrm{bm}$

Connectors

Each connector is one inch thick and are five feet in length (vith the exception of the aerobrake connector, which is 10 feet long). The design of the MEPS vehicle requires a total of four 5-foot long and one 10-foot long connectora; only two 5-foot long connectors and the $10-f 00 t$ long connector will remain on the vehicle during aerobraking. For the total mass of the connectors,

```
(2.\pi\cdot12.5 ft) x (0.08333 ft) x (length) x (173.4 lbm/fta)
masa for Earth configuration (lbm) = 1135 x 30 ft = 34050
mase for Mara configuration (lbm) = 1135 x 20 ft = 22700
```


Total Vehtche Mane

Uaing the individual calculations given above, the total mass of the MEPS vehicle can be determined:

Equatorial Lander:

Satellite/CIC:

Secondary Propulaion:

etringera bulkhead	$\left(43.37 \mathrm{lbm} / \mathrm{ft}^{2} \cdot 10 \mathrm{ft}\right)$ $(2 \cdot 118.26 \mathrm{lbm})$	$\begin{aligned} & 435 \mathrm{lbm} \\ & 240 \mathrm{lbm} \end{aligned}$
cylinder	(283.83 $1 \mathrm{bm} / \mathrm{ft} \cdot 10 \mathrm{ft})$	2840 1bm
pa		3550 lbm
otal mass		7065 1bm

Main Propulaion:

stringer: bulkhead	$\begin{array}{r} \left(43.37\left(\mathrm{bm} / \mathrm{ft}^{2} \cdot 70 \mathrm{ft}\right)\right. \\ (5 \cdot 118.26 \mathrm{lbm}) \end{array}$
ylinder	(283.83 lbm/ft - 70 ft)
pe	
tal mass	

Polar Lander:

Total Vehicle (Structural Mass):
Earth departure $\quad 111,500$ 1bm Mars arrival *67,100 1bm

PROPOSED STRENGTH AMALYSIS

The following analyeis approach will be umed to find (a) the proper material for the atringers, module mkin, and bulkheads: (b) the correct material and thickness of the connectors; and (c) the material composition and overall number of pins for module connections.

A complete finite element model for the MEPS vehicle is being placed on MSC/pal. This model includes the proper lengthe of the modules and connectore (using aluminum as the initial material for all componente) and the payload mase inside each module. The force cases for dynamic analysis of the system are being obtained from the propulsion and orbital insertion analysen. These caees vill include thrugt from the initial deperture burn, acceleration and thrust from the deceleration burn to insert into Martian orbit, and the acceleration and drag from the maximum-force aerobraking paes. The model and forces will be translated into a NASTRAN input file using a program available on MSC/pal2.

NASTRAN will be executed using the input cases outiined above and the output will be evaluated; to utilize this evaluation, the following procedure should be applied. If the evaluation show that the structural integrity of the connector is in doubt, two cases should be run. First, use aluminum for the module and a metal matrix composite (MMC) for the connector;
eccond, use aluminum for both components but increase the thickness of the connector. If the evaluation shows question in the module' setrength, the following runs will be conducted sequentially until a proper aolution is reached: (1) increase the atiffener and bulkhead sizes (areas): (2) change the material of the module to MMC and use the original atiffener and bulkhead sizes alone; (3) use aluminum for all componenta but increase the thickness of the module; and (4) increase the aizes of all componenta while atill using aluminum.

Once the proper sizes for minimum atress on the entire vehicle have been determined, an analysis technique outlined by R. E. Peterson in Streas Concentration Desian Factora (Wiley Prese, 1974) will be umed to determine the streas in a pin hole of a connector. Frow this information, strength or failure of the connection can be determined. If the pin showe failure, then the material of the pina muat be changed; hovever, if the pin hole indicates failure, then the thickness around the hole vill be increased. Also from this atress information, and some asaistance from Dr. W. A. Foster, Jr. of Auburn Univeraity, the minimum amount of pin connections can be determined.

ANALYSIS OF EARTH-MARS TRAJECTORY

After MEPS has been moved to the ecliptic plane, a propulsive burn will be conducted to start the vehicie on the journey to Mara. A Hohmann (minimum energy) transfer will be employed to save fuel, although the time of flight will be extended. This section will introduce the anelysis of the EarthMers trajectory, including the magnitudes of the required propulsive burns and the determination of the time of filght.

Farth Departure

The semi-mejor axis of the transfer is defined as

$$
\begin{aligned}
& \text { Ir }=K_{2} \cdot\left(r_{\oplus}+r_{0}\right)=\% \cdot(4.908 \mathrm{E} 11+7.477 \mathrm{E} 11) \mathrm{ft} \\
& \text { ar }=6.193 \mathrm{E} 11 \mathrm{ft}
\end{aligned}
$$

To determine the propuleive burns for the start of the trensier, the epproach to the problem must be considered. The transfer between Earth and Mare vill require determination of relative velocities, as the eituation is not simple transfer between two orbits bout the sime body. Now two bodies must be taken into account--the Earth and the sun.

The velocity of the vehicle relative to the sun can be expressed in terma of velocities about earth:

$$
V_{E \cdot 1}=V_{\oplus}+V_{0 \cdot 1}=V_{\oplus}+V_{\infty}
$$

where Vo 1 the hyperbolic excess speed. This speed can be expremsed as

$$
V_{\infty}=V_{0} \cdot 1_{0}-V_{\infty}
$$

A fundamental equation used in astrodynamice is the Vis-Viva equation. This equation allows the calculation of aelocity at a point in an orbit if the parameters of the orbit are known:

$$
v=\sqrt{\mu \cdot\left(\frac{2}{r}-\frac{1}{a}\right)}
$$

where μ ia the gravitational parameter of the body (planet) vhich influences the vehicle, r is the distance from the body where the propulsive burn is applied, and is the semi-major axis of the transer ellipae.

Applying the Vis-Vive equation to find the velocity of the vehicle relative to the an, the required inputs are

$$
\begin{aligned}
\mu_{\odot} & =4.687 \mathrm{E} 21 \mathrm{ft} / \mathrm{Eec}^{2} \\
r_{\Theta} & =4.908 \mathrm{E} 11 \mathrm{ft} \\
\cdot & =6.193 \mathrm{E} 11 \mathrm{ft}
\end{aligned}
$$

The resulting velocity is

$$
V_{0.0}=107,383.46 \mathrm{ft} / \mathrm{sec}
$$

The velocity of the Earth is calculated by assuming the Earth is in a circular orbit about the aun. Using the equation for velocity in a circular orbit,

$$
v_{\Theta}=\sqrt{\frac{\mu_{\odot}}{r_{\oplus}}}
$$

and the appropriate values given above,

$$
V_{\oplus}=97.722 .64 \mathrm{ft} / \mathrm{sec}
$$

The hyperbolic excess speed can now be determined:

$$
\begin{aligned}
& V_{\infty}=V_{0 . \odot}-V_{\oplus} \\
& V_{\infty}=(107.383 .46-97,722.64) \mathrm{ft} / \mathrm{sec} \\
& V_{\infty}=9660.82 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

The burnout velocity is expreased as

$$
v_{* \bullet}=\sqrt{v_{\infty}^{2}+\frac{2 \mu_{\Theta}}{r}}
$$

At an radius of $22,567,193.75$ ft (3714.153 $n \mathrm{mi})$ from the center of the Earth, with

$$
\mu_{\oplus}=1.408 \mathrm{E} 16 \mathrm{ft}^{2} / \mathrm{mec}^{2}
$$

the burnout velocity has the value of

$$
\text { V.e }=36621.86 \mathrm{ft} / \mathrm{sec}
$$

The velocity of the vehicle relative to the Earth im given by the expreasion for circular velocity, using the gravitational parameter for the Earth and the radius of 22, 567,193.75 ft:

$$
V_{. . / \epsilon}=24,978.28 \mathrm{ft} / \mathrm{sec}
$$

With this value and the value for the burnout velocity the required propulaive burn can be calculated:

$$
\begin{aligned}
& \Delta V=V_{6}-V_{6} \cdot \oplus \\
& \Delta V=11643.58 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Marg Capture

The equations for analyzing the propulaive burn to allow capture by Mars are similar to those used for the Earth departure analyeie.

The hyperbolic excess apeed is expressed as

$$
\left|V_{\infty}\right|=\left|V_{\odot} \cdot \theta_{0} \cdot V_{8}\right|
$$

The velocity of the apacecraft relative to the aun is determined by the Vis-Viva equation, with the following inputs:

$$
\begin{aligned}
& \mu_{0}=4.687 \mathrm{E} 21 \mathrm{ft}^{2} / \mathrm{sec}^{2} \\
& r_{\delta}=7.477 \mathrm{E} 11 \mathrm{ft} \\
& a_{r}=6.193 \mathrm{E} 11 \mathrm{ft}
\end{aligned}
$$

Substitution into the Vie-Viva equation yields the value of this velocity:

$$
V_{. . .0}=70,489.39 \mathrm{ft} / \mathrm{sec}
$$

The velocity of Mare bout the min is calculated under the assumption that Mara in moving in a circular orbit about the sun:

$$
\begin{aligned}
& v_{\delta}=\sqrt{\frac{\mu_{\phi}}{r_{\delta}}} \\
& v_{\delta}=79174.22 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Thus the hyperbolic excems mpeed has the value of

$$
V_{.}=8684.83 \mathrm{ft} / \mathrm{sec}
$$

The magnitude of the propulaive burn required for Mars capture is expreseed as

$$
\Delta V=V_{0.01}-V_{0, r}
$$

where $V_{\text {.or }}$ is the velocity of the epacecraft at the point of closest approach to Mars. Because the vehicle is on a hyperbolic approach to Mare the velocity of the vehicle relative to Mars is expressed vith the same equation as the burnout velocity used for the Earth departure:

$$
\begin{aligned}
& V_{0 . O}=\sqrt{V_{0}^{2}+\frac{2 \mu \phi}{r_{P}}} \\
& \mu_{\delta}=1.5066 \mathrm{E} 15 \mathrm{ft}^{2} / \mathrm{sec}^{2} \\
& r_{P}=12,774,573.5 \mathrm{ft}(2102.46 \mathrm{n} \mathrm{mi}) \\
& V_{H} \cdot \delta=17,643.74 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

The elliptic orbit of the vehicle after Mars capture is defined as $1,640,500 \mathrm{ft}(270 \mathrm{nmi}) \times 108,151,603 \mathrm{ft}\left(17800 \mathrm{~nm} . \mathrm{m}_{\mathrm{l}}\right)$. Given the radius of Mars,

$$
r_{0}=11,134,073.5 \mathrm{ft}
$$

the aemi-major axie of the ellipae can be calculated using the following:

$$
\begin{aligned}
& =\xi \cdot[(1,640,500 \mathrm{ft}+\mathrm{r})+(108,151,603 \mathrm{ft}+\mathrm{r})\} \\
& =66,030,125 \mathrm{ft}(10,867.37 \mathrm{nmi})
\end{aligned}
$$

At periapais the velocity of the vehicle is determined (using the Vis-Viva equation) to have the following value:

$$
V_{\text {f.e }}=14,596.52 \mathrm{ft} / \text { aec }
$$

Using the expression for the propulsive burn required for Mars capture.

$$
\begin{aligned}
& \Delta V=V_{-A} / \delta-V_{p e r} \\
& \Delta V=3047.22 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Time of Flight

The time required for the transier from Earth to Mars can be calculated from the period of the elliptical orbit. The orbit period is defined as

$$
T=\sqrt{\frac{2 \pi}{\mu_{\theta}}} \theta^{2, \theta}
$$

Substitution of the appropriate values yields
$\mu_{0}=4.687 \mathrm{E} 21 \mathrm{ft} / \mathrm{sec}^{2}$
$a_{r}=6.193$ E11 ft
$T=44,728,466.79$ seconds $=517.7$ days
Since this period is the time of flight for an entire elliptic orbit, the required time to reach Mare is one-half the period, or

$$
\text { Ten }=258.85 \text { day }
$$

PROPELLANT ANALYSIS FOR THE SECONDARY PROPULSION SYSTEM

Abstract

The eecondary propulaion system vill be employed upon approach to Mars. The purpose of this engine syetem is to slow down MEPS to obtain an elliptic orbit about Mars and to help in the final stagea of orbit circularization. The analysis presented in this section concerns the calculation of the propellant mase (oxidizer and fuel) for each ΔV burn and the required volume of the fuel tanks.

The mameen of each MEPS module which will be placed into orbit about Mara are presented below. These values do not include propellant.

Aerobrake	$12,0001 \mathrm{bm}$
Equatorial Lander/Rover	$65,0001 \mathrm{bm}$
Satellite Syatem	$3,5001 \mathrm{bm}$
CIC	$3,0001 \mathrm{bm}$
Structure	$67,1001 \mathrm{bm}$

The total mase of MEPS excluding propellant is 140,000 lbm.
Four ΔV burne vill be required during the circularization process at Mars. The first burn vill place the MEPS vehicle system into a highly elliptic orbit about Mars. During the appropriate orbit a second ΔV burn $v i l l$ be performed at the orbit apoapeis to lover the periapsis into the Martian atmosphere. Folloving aerobraking, a third burn moves the periapsis out of
the atmomphere, and the fourth ΔV burn $w i l l$ provide final orbit circularization by adjuating the apoapsis. The calculated values of these burns vill nov be presented.

Burn 1 (orbit capture)	3047.90 ft/sec
Burn 2 (lover periapsis)	$75.1214 \mathrm{ft} / \mathrm{sec}$
Burn 3 (raise periapsis)	$301.6568 \mathrm{ft} / \mathrm{sec}$
Burn 4 (adjust apoapsis)	$12.1129 \mathrm{ft} / \mathrm{sec}$

The aecondary propulaion syetem vill use three engines Eimilar to the Space Shuttle Orbiting Maneuvering System (OMS). These engines have a mecific thrust of 280 seconds. With the help of an equation relating the burn to the epecific thrust and initial and final masses, the propellant mase (initial mase before burn) required for each burn can be calculated.

$$
\begin{aligned}
& \Delta V=I_{m p} \cdot g_{e} \cdot \ln \left(H_{1} / H_{f}\right) \\
& H_{1}=H_{+} \cdot e^{\left(\Delta V / I \approx p \cdot g_{-}\right)}
\end{aligned}
$$

Use of thif equation vill begin the propellant analysis required for the secondary propulsion aystem; for each burn the mase of the propellant (oxidizer and fuel) must be determined. The final vehicle mase is 140,000 lbm. Substitution of this mass and the value for the ΔV burn (12.1129 $f t / s e c)$ results in the total vehicle mase prior to apoapsis adjuatment (or, folloving periapsia raiking):

$$
\begin{aligned}
& H_{14}=M_{r 2}=(140,0001 \mathrm{bm}) \cdot e^{(12.1129 /(280 \cdot 32.174))} \\
& M_{r_{2}}=140,188.361 \mathrm{bm}
\end{aligned}
$$

The propeliant mane required for apoapais adjuatment is determined eimply by mubtracting the total mane folloving adjuatment from the mase prior to the maneuver:

$$
\begin{aligned}
& n_{p 4}=(140,188.36-140,000) 1 \mathrm{bm} \\
& n_{p}=188.361 \mathrm{bm}
\end{aligned}
$$

Following this procedure, the propellant mase breakdown is given in the accompanying table.

Propellant Mase Required For ΔV Burns

$\begin{aligned} & \text { Burn } \\ & \text { Number } \end{aligned}$	$\begin{gathered} \Delta V \\ (\text { ft/Eec) }) \end{gathered}$	Total Vehicle Mase (lbm)	Propellant Masa (1bm)
1	3047.90	205, 026. 35	58, 850. 44
2	75. 12	146, 175. 91	1213. 86
3	301.66	144,962.05	4773.69
4	12.11	140, 188. 36	188. 36

Note that the total vehicle mame on approach to Mars is determined to be 205,026. 35 lbw. The total mass of the propellant uned during the ΔV burna is 65,026.35 lbm.

To calculate the masa of oxidizer ($\mathrm{N}_{\mathrm{E}} \mathrm{O}_{4}$) and fuel (MMH) the oxidizer/fuel ratio (1.65) will be used. Every 1.65 parta of oxidizer is accompanied by 1 part of fuel, for a total of 2.65 parts of propellant. From the ratio,

```
mase of Ns O4 = (1.65/2.65)\cdotHp
mase of MMH = (1.0/2.65).Mp
```

For the total mase of propellant given above (65,030 1bm),
manes of $\mathrm{K}_{8} \mathrm{O}_{4}=40,491 \mathrm{lbm}$
mane of $\mathrm{MHH}=24,540$ lbm
The volumes of the nitrogen tetroxide and mono-methyl hydrazine are calculated with the equation for density:

Volume mass/density
where
$\rho_{\mathrm{N}_{2} \mathrm{O}_{4}}=85.501 \mathrm{bm} / \mathrm{ft}^{3}$
$\rho_{\text {MMH }}=53.831 \mathrm{bm} / \mathrm{ft}^{2}$
Using the oxidizer and fuel masses given above, the respective volumes are

$$
\begin{aligned}
& \forall_{\mathrm{N}_{2} \mathrm{O}_{4}}=473.57 \mathrm{ft}^{3} \\
& \forall_{\mathrm{MMH}}=455.88 \mathrm{ft}^{3}
\end{aligned}
$$

The mape of the tanke can nov be determined. If cylindrical tanks (25 ft . diameter) are used, the length may be calculated uaing

$$
\ell=V /\left(\pi \cdot R^{2}\right)
$$

For the nitrogen tetroxide,

$$
\ell_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.965 \mathrm{foot}
$$

and for the mono-methyl hydrazine,

$$
\ell_{\text {MMH }}=0.929 \text { foot }
$$

Note that the required length is only one foot, which is very 1mpractical.

Spherical tanks will now be considered. For the radius of the tank,

$$
R=\left(\frac{3 \cdot 7}{4 \cdot \pi}\right)^{1 / 3}
$$

Calculation of the mphere radil for the oxidizer and fuel tanks yields, reapectively,
$\mathrm{R}_{\mathrm{N}_{2} \mathrm{O}_{4}}=4.835$ feet
$R_{\text {MMM }}=4.774$ feet
Frow this analyaia the apherical tank is the optimum design. The tanke can be contained side-by-side vithin the cylindrical compartment of the MEPS vehicle; the radif of the apherea may be increased to five feet for ease of construction, thus providing for a compartment 10 feet in length with mufficient room for the 3 engines.

ANALYSIS OF THE RAIM PROPULSION SYSTEM

The following eection contains the analysis of the engines considered for MEPS. Four engines vere compared on the basis of thrust, epecific thrust, veight, and burntime; the Space Traneportation Main Engine (STME) was chosen for the main propulsion system. The necessary date (propellant mass and volume, module length/tank eize) is presented for the STME, and a maging analyeis 1E shown.

Enaine Comparisong

Four enginea vere compared in the analysia of the main propulaion eyatem--the J-2, RL-10-A-1, Space Shuttle Main Engine (SSME), and the Space Transportation Main Engine (STME). The J-2 was used for the third stage of the Saturn rockets. The original RL-10 engine vas used for the early Saturn rockets, and has seen use on the Titan; the RL-10-A-1 is more of an engine design as this engine has not been produced. The SSME is currentiy in operation on the Space Shuttle orbitera, while the STME is a second generation SSME-based engine which also has not gone into production.

By using Newton's Second Law, and amsuming the initial mass (engine and propellant) to be equal, the four engine candidates can be compared:

$$
\begin{aligned}
\Sigma F & =T=m \cdot a \\
T & =\frac{M \cdot d V}{d t}
\end{aligned}
$$

Revriting the latter equation as an expression for time,

$$
\begin{aligned}
d t & =\frac{M \cdot d V}{T} \\
\Delta t & =\frac{M \cdot \Delta V}{T}
\end{aligned}
$$

Thie final equation is ueed for calculation of the burn time of each engine. Note that the comparisone vere made on the basis of thruet levela of approximately equal magnitudes; for approximately 450,000 1b of thruat the appropriate number of engines must be considered.

$\mathbf{j - 2}$	Thrust
	IEp
	Mase
	Burn time

200,000 lbf x 2 engines 418 seconds 3480 (6960) 1bm 635.53 seconde
total mase leaving orbit $=702588.2 \mathrm{lbm}$ delta-V burn required $=11641.26 \mathrm{ft} / \mathrm{gec}$

RL-10-A-1	Thrust Iep Mase Burn time	15, 000 lbf $\times 29$ engines 433 meconds 298 (8642) 1bm 584.40 seconds
SSME	Thrust IEp Mass Burn time	```470,000 lbf x 1 engine 433 meconds 6700 1bm 540.90 seconds```
STME	Thruat Isp Mase Burn time	435, 000 lbf $\times 1$ engine 449 seconds 7455 1bm 584. 40 seconds

A short duration burn time is desirable because of the decreased risk of course deviation during the burn (ref 3). The shortest burn time is achieved by the engine with the greatest
thruet; by the above data this engine is the SSME. The next lowest burn time occure with the RL-10-A-1 engines and the STME. The RL-10-A-1 wae found to be unfeasible aince 29 unita are required to obtain a comparable thruat level. Although the STME has a longer burn time than the SSME, the STME is designed to be more reliable and leas expenaive than the SSME (ref 2); thus the Space Tranaportation Main Engine is melected over the Space Shuttle Main Engine.

Comparison of the STME to the J-2 engine is based on thrust, veight, burn time, and design. The two J-2 engines produce 400,000 lbf of thrust and veigh 6960 lbm; the STME veighs alightly more but produces greater thrust (435,000 lbf). The burn time of the STME if considerably less than that of the J-2. In addition, the STME is being designed mpecifically for reusability and epece applications (one design of the STME nozzle expands the flow at the exit to the optimum pressure for operation in the vacuum of apace).

STME Enaine Information

The engine data required for the analyeie of the MEPS misaion vill now be presented. Some of the engine particulars have been previously stated.

```
Isp = 449 seconds
Thrust = 435,000 lbf
Manes = 7455 lbm
Oxidizer/Fuel Ratio =6.0
Area Ratio = 55/141
```

The initial mase of the MEPS vehicle prior to leaving Earth may be calculated using the following analyaie:

$$
\begin{aligned}
& \Delta V=I_{m p} \cdot g_{e} \cdot \ln \left(M_{l} / H_{p}\right) \\
& H_{1}=M_{p} \cdot g_{p}\left(\Delta V /\left(I s p \cdot g_{\bullet}\right)\right)
\end{aligned}
$$

The vehicle mase before the engines and the polar lander gyetem are released is 381,505 pounde (see previous aection). For a required delta-V burn of $11641.26 \mathrm{ft} / \mathrm{sec}$ to begin the Earth-Mars trenefer,

$$
\begin{aligned}
& M_{1}=(381,5051 b) \cdot e^{(11641.26 /((449) \cdot 32.174))} \\
& M_{1}=854,0201 b
\end{aligned}
$$

The mase of the propellant is the difference between the initial masa (vehicle plus propellant) and the final mase (vehicle only). For the given conditions,
$\boldsymbol{H}_{\boldsymbol{p}}=\mathrm{H}_{\mathbf{1}}-\mathrm{H}_{\boldsymbol{f}}$
$\mathrm{H}_{\mathrm{o}}=854,019.4 \mathrm{ib}-381,501.4 \mathrm{ib}$
M. $=472,518$ 1b

The oxidizer/fuel ratio for the engine is given as 6.0. Every eix parta of liquid oxygen muet be accompanied by one part of liquid hydrogen; thus a total of seven parts of oxidizer and fuel vill be available. Using this development, the masses of the liquid oxygen and liquid hydrogen can be determined.
$\mathrm{M}_{\mathrm{LO}}=6 / 7 \cdot \mathrm{~K}_{\mathrm{E}}=6 / 7 \cdot 472,5181 \mathrm{~b}=405,015.431 \mathrm{D}$
$M_{L} H_{E}=1 / 7 \cdot M_{*}=67,502.57 \mathrm{Ib}$
Using the denaities of the oxidizer and fuel, and the relationship betveen density and volume, the volumes of the liquid
oxygen and liquid hydrogen can be calculated. Knowing these volumea vill allow the sizing of the fuel and oxidizer tanks.

$$
\begin{aligned}
& \rho_{\text {LeE }}=71.07 \mathrm{lb} / \mathrm{ft}^{3} \text { at }-297^{\circ} \mathrm{F} \\
& \rho_{\text {LuE }}=4.42 \mathrm{lb} / \mathrm{ft}^{3} \text { at }-423^{\circ} \mathrm{F} \quad(5: 4-23)
\end{aligned}
$$

The denmity is defined as the mame per unit volume. Therefore,

$$
\begin{aligned}
& H_{\text {E }}=405,015 \mathrm{lb} \cdot\left(1 \mathrm{ft}^{3} / 71.07 \mathrm{lb}\right)=5699 \mathrm{ft}^{2} \\
& H_{\text {He: }}=42,727.7 \text { gallons } \\
& \text { Hne }=67,503 \mathrm{lb}\left(1 \mathrm{fta}^{2} / 4.42 \mathrm{lb}\right)=15,271.95 \mathrm{ft}^{2} \\
& \text { Hne }=114,499.8 \text { gallons }
\end{aligned}
$$

A premare vesael is normally mpherical, or cylindrical with hemiapherical ends. The diameter of the MEPS vehicle must be coneidered to determine vhich type tank will hold the liquid oxygen and hydrogen. For the diameter of 25 feet, the volume of a Epherical tank is

$$
\forall=4 / 3 \cdot \pi \cdot(12.5 \mathrm{ft})^{2}=8181.23 \mathrm{ft}
$$

This volume falla between the required volumes for the oxidizer and fuel. Thus, apherical tank will be employed for the liquid oxygen, and the cylindrical/hemiapherical tank will be used for the liquid hydrogen.

For the calculated volume of liquid oxygen the corresponding tank elze is determined to be volume $=5699 \mathrm{fta}^{2}=4 / 3 \cdot \pi \cdot R^{2}$ $R=11.08 \mathrm{ft}$

If boil-off of the liquid oxygen ($12.0 \mathrm{lb} / \mathrm{hr}$) is considered, the actual size of the tank must be increased to account for the
expendable oxidizer. Based on a thirty day tranmport and conetruction period, the volume of the L_{s} loat to boil-off is
mate $=(720 \mathrm{hrs}) \cdot(12.0 \mathrm{lb} / \mathrm{hr})=8640 \mathrm{lb}$
volume $=(8640 \mathrm{lb}) \cdot\left(1 \mathrm{fta}^{2} / 71.07 \mathrm{lb}\right)=121.57 \mathrm{fta}^{3}$
This additional volume yielda an increase in the diameter of the epherical tank to 22.5 feet.

The volume of liquid hydrogen is much larger than that of the liquid oxygen and, an mentioned previouely, a cylindrical tank with hemispherical endcaps vill be required. For the tank to fit anugly inaide the MEPS vehicle (diameter of 25 feet), the length of the tank can be calculated:
volume $=4 / 3 \cdot \pi \cdot(12.5)^{2}+n \cdot(12.5)^{2} \cdot h=15,271.95 \mathrm{ft}^{2}$
length $=h=14.4 \mathrm{ft}$
The tank aize vill increase under consideration of boil-off. The rate for $L H_{e}$ is $18.0 \mathrm{lb} / \mathrm{hr}$, and for the same thirty day period used earlier,
mame $=(720 \mathrm{hra}) \cdot(18.0 \mathrm{lb} / \mathrm{hr})=12,960 \mathrm{lb}$
volume $=(12,960 \mathrm{lb}) \cdot(1 \mathrm{ft} 3 / 4.42 \mathrm{lb})=2932.13 \mathrm{ft}$
The change in the length of the tank is now determined:
length $=h=(15,271.95+2932.12-8181.23) / 490.87$
$h=20.45 \mathrm{ft}$
Since the endcape have a radius of 12.5 feet, the total length of the LHe tank is
$25 \mathrm{ft}+20.45 \mathrm{ft}=45.45 \mathrm{ft}$

If the two tanke are mounted bulkhead to bulkheed, the total length of the mein propulsion module is 45.45 ft + $22.5 \mathrm{ft}=67.95 \mathrm{ft}$

Stsging Analyeis
In order to determine the optimum number of stages for Earth deperture, the following equetion is used:

$$
\lambda=\left[e^{-\Delta v / n c e}-\delta\right]^{n}
$$

The results of the analysis performed on the STME are plotted below. From this plot, one stage if shown to be the optimum configuration for the engines.

AEROBRAKE ANALYSIS

The aerobrake vill be used for orbit circularization mbout Mare. This section vill present the determination of the weight of the serobrake and the calculation of the propulsive burns required for the circularization analysis.

Weiaht Determination
Using information provided by Bill Willcockion, OTV Program Manager at Martin Merietta Aerospace venver), the mase of an eerobrake can be eized vith the aerobrake ares. From values presented in reference 7.

```
Area = 142 fta
```

mase of rigid surface insulation (RSI) = 401 1bm mase of flexible suriace insulation (FSI) $=88901 \mathrm{bm}$ etructure veight = 11032 1bm

The veight of the RSI vill remein 401 lbw gince a diameter of 25 feet is used for the Martin Marietta brake as well as the proposed brake. The weight of the FSI will require a calculation. For the Martin serobreke,

$$
A=\frac{\pi}{4}\left[(142 f t)^{2}-(25 f t)^{2}\right]=15345.895 f t^{2}
$$

Obteining veight to area ratio,

$$
\frac{\text { veight }}{\text { ares }}=\frac{88901 \mathrm{bm}}{15345.895 \mathrm{ft}^{2}}=.57931 \mathrm{lbm} / \mathrm{ft}^{2}
$$

For the MEPS aerobrake,

$$
A=\frac{\pi}{4}\left[(95 f t)^{2}-(25 f t)^{2}\right]=6597.345 f t^{2}
$$

The veight of the FSI is calculated using the veight/area ratio previously determined:

$$
\begin{aligned}
& W_{\text {fs: }}=\left(.57931 \mathrm{lbm} / \mathrm{ft}^{2}\right) \cdot\left(6597.345 \mathrm{ft}^{2}\right) \\
& W_{\text {f: }}=3821.895 \mathrm{lbm}
\end{aligned}
$$

To determine the veight of the aerobrake atructure, size the veighta ueing a veight/area ratio:

$$
\frac{\text { Weereet }}{\text { w/4 }-(95 \mathrm{ft})^{2}}=\frac{11032 \mathrm{lbm}}{\mathrm{x} \cdot(142 \mathrm{ft})^{2}}
$$

$$
\text { Weiree: }=4937.701 \text { 1bm }
$$

Propulaive Burns Used For Mare Orbit Circularization
Although aerobraking vill be applied during the MEPS mimeion, complete orbit circularization vill require propulaive burns ueing the eecondary propulsion syatem. These burns muet be coneidered for three different maneuvers: lovering the periapsis prior to aerobraking, and raising the periapais and adjusting the apoapeis after braking. Calculation of each V vill be made by applying the Via-Viva equation:

$$
v=\sqrt{\mu_{\delta} \cdot(2 / x-1 / a)}
$$

where r is the length of either the periapais or apoapsis, meamured from the center of Mars, and a is the semi-major axis of the elliptic orbit.

To decrease the periapsim, the burn vill be applied at the apoapas of the initial elliptic orbit about Mars. The desired periapeis altitude has been determined to be 314,976 ft 151.84 nautical wiles). The lengthe of the initial periapsie and apoapeis are $120,598,076.5 \mathrm{ft}(19848.27 \mathrm{n} \mathrm{mi})$ and 12,774,573.5 ft (2102. 46 n mi), respectively, measured from the center of Mars.

The lengthe of the semi-major axes of the two different elliptical orbite (eame initial apoapsis, two different periapees) are determined:

$$
\begin{aligned}
r_{0}= & 12,774,573.5 \mathrm{ft}(2102.46 \mathrm{nmi}) \\
& a_{r_{1}}=\%\left(r_{0}+r_{0}\right)=66,686,325 \mathrm{ft}(10,975.37 \mathrm{nmi}) \\
r_{0}= & 11,449,049.5 \mathrm{ft}(1884.31 \mathrm{nmi}) \\
& a_{r_{2}}=66,023,563 \mathrm{ft}(10,866.29 \mathrm{n}(\mathrm{mi})
\end{aligned}
$$

Applying the Vis-Viva equation, the velocities at the apoapaie for each elliptical orbit are calculated:

$$
\begin{aligned}
& V_{1}=\left[\left(1.5066 \mathrm{E} 15 \frac{\mathrm{ft}}{\mathrm{ecc}}\right) \cdot\left(\frac{2}{120598076.5 \mathrm{ft}}-\frac{1}{66686325 \mathrm{ft}}\right)\right]^{1 / 2} \\
& V_{1}=1546.98 \mathrm{ft} / \mathrm{sec} \\
& V_{e}=\left[\left(1.5066 \mathrm{E} 15 \frac{\mathrm{ft}}{\mathrm{ecc}}\right) \cdot\left(\frac{2}{120598076.5 \mathrm{ft}}-\frac{1}{66023563 \mathrm{ft}}\right)\right]^{1 / 2} \\
& V_{e}=1471.85 \mathrm{ft} / \text { घec }
\end{aligned}
$$

The propuleive burn required to lover the periapeis is determined by taking the difference betveen the apoapsis velocities given aboves

$$
\Delta V=V_{E}-V_{1}=-75.1214 \mathrm{ft} / \mathrm{sec}
$$

The minue aign indicates the burn will be applied in the direction opposite that of the MEPS vehicle (retrofire).

The alame analyais is performed for the burns to raise the periapsis and apoapsis. The necessary inputs and output are presented:

```
to raise the periapais to 1,640,500 ft (270 n mi):
    ra = 12,717,736.74 ft (2093.11 n mi) -- from program
    r. = 11,449,049.5 ft (1884.31 n mi)
    ar = 12,083,391.5 ft (1988.71 n mi)
    r. = 12,774,573.5 ft (2102.46 n mi)
    ar = 12,746,155.2 ft (2097.79 n mi)
```

 \(\Delta V=301.6568 \mathrm{ft} / \mathrm{sec}\)
 to raise the apoapsis to $12,774,573.5 \mathrm{ft}(2102.46 \mathrm{n} \mathrm{mi})$ from
the center of Mares

```
r. = 12,774,573.5 ft (2102.46 n mi)
r. = 12,717,736.7 ft (2093.11 n mi)
Ar m 12,746,155.2 ft (2097.79 n mi)
r. = 12,774,573.5 ft (2102.46 n mi)
Im = 12,774,573.5 ft (2102.46 n mi)
\DeltaV = 12.1129 ft/sec
```


DERIVATIOMS FOR THE AEROBRAKING PROGRAK

The program included in Appendix A is used to execute the iterations for the aerobraking process. With inputs concerning the orbit of a vehicle about Marm, and parameters of the aerobrake, the complete aerobraking pasaage can be analyzed. The output presents the time for aerobraking, the drag forces that act on the aerobrake, and the parametera of the final orbit.

The program requirea eeveral derivations--the location of the interection of a circle (Mar⿻ atmomphere) and an ellipse (vehicle orbit); the length of segment between the intersection points (total distance travelled within the atmosphere); and the drag coefficient of the aerobrake.

Intergection Pointe

The equations of an ellipee and a circle are given, respectively, as

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& (x-a c)^{2}+y^{2}=r^{2}
\end{aligned}
$$

where as the semi-major axis and is the eccentricity of the orbit; and ae is the location of the center of the circle representing the Martian atmoaphere (i.e., the center of Mars). In eddition, the trajectory equation, which gives the location of any point on the ellipse, is defined as

$$
r=\frac{p}{1+e^{\cdot} \cos \nu_{0}}
$$

In the above equation all of the variables (semi-latus rectum, eccentricity, and argument of periapais) are given parameters of an elliptic orbit.

Solving for y^{2} in the two equations,

$$
\begin{aligned}
& y^{2}=b^{2}-\frac{b^{2} x^{2}}{a^{2}} \\
& y^{2}=x^{2}-(x-2)^{2}
\end{aligned}
$$

Equating the y^{2} terma,

$$
\begin{aligned}
& b^{2}-\frac{b^{2} x^{2}}{a^{2}}=r^{2}-(x-a)^{2} \\
& b^{2}-\frac{b^{2}}{a^{2}} \cdot x^{2}=r^{2}-x^{2}+2 a e x-a^{2} e^{2} \\
& \left(1-\frac{b^{2}}{a^{2}}\right) \cdot x^{2}-2 a e x+\left(b^{2}-r^{2}+a^{2} e^{2}\right)=0
\end{aligned}
$$

Using the quadratic equation to solve for x,

$$
x=\frac{2 a e \pm \sqrt{4 a^{2} e^{2}-4 \cdot\left(b^{2}-r^{2}+a^{2} e^{2}\right) \cdot\left(1-b^{2} / a^{2}\right)}}{2 \cdot\left(1-b^{2} / a^{2}\right)}
$$

Choosing only the negative value of the square root due to the geometry of the problem), the x-location of the intersection pointe in known. Substitution of x back into an expression for y vill yield the complete location of the points.

Seqment Length

The values of x and y obtained am the intersection points vill be used in this derivation. The angle created between radif from the center of Mars is denoted as θ, is the segment length, R is the radius, c is the chord of the arc, and $d i s$ the distance from the center of Mars to the x-position of the intersection points.

Uaing the geometry of an arc,

$$
c=2 y
$$

$$
d=(x-a c)
$$

$$
R=\left(d^{2}+y^{2}\right)_{k}
$$

$$
\theta=2 \cdot \tan ^{-1}\left(\frac{c}{2 d}\right)=2 \cdot \tan ^{-1}\left(\frac{c / 2}{d}\right)=2 \cdot \tan ^{-1}\left(\frac{y}{x-a e}\right)
$$

Finally,

$$
E=R \theta
$$

Thus the aegment is known, and this value can be used to determine the change in velocity due to drag forces during aerobraking.

Determination of the Drag Coefficient
From hyperzonic equationa for a cone, the drag coefficient 1e given as

$$
C_{V}=2: \sin n^{2} \theta_{V}+\left(1-3 \cdot \sin n^{2} \theta_{V}\right) \cdot \sin n^{2} \alpha
$$

where

$$
\begin{aligned}
\theta_{\nu} & =\text { cone half-angle } \\
\alpha & =\text { angle of attack }
\end{aligned}
$$

For the MEPS mission the design for zero angle of attack (using momentum wheels and the cone's inherent stability) allows cancellation of the second term. Therefore (1:681),

$$
C_{0}=2 \cdot \sin ^{2} \theta_{v}
$$

ANALYSIS FOR THE OBSERVATION SATELLITE

This section vill contain the calculations of the propulsive burns required for orbital tranmer of the satellite. In addition, the determination of the aolar array panel (applicable to the CIC as vell) will also be preaented.

Propulaive Burne

A trenafer between a $1,640,500 \mathrm{ft}(270 \mathrm{n} \mathrm{mi})$ orbit and a 2,313,105 ft (327.64 $n \mathrm{mi})$ orbit will be required to put the matellite into the observation orbit. For these calculations a Hohmann (minimum energy) trangfer will be assumed.

Calculation of the altitudes is the firmtetep:

$$
\begin{aligned}
r_{6} & =11,134,073.5 \mathrm{ft}(1832.47 \mathrm{n} \mathrm{mi}) \\
r_{1} & =(11,134,073.5+1,640,500) \mathrm{ft} \\
& =12,774,573.5 \mathrm{ft}(2102.46 \mathrm{nmi}) \\
r_{r} & =(11,134,073.5+2,313,105) \mathrm{ft} \\
& =13,447,178.5 \mathrm{ft}(2005.25 \mathrm{nmi})
\end{aligned}
$$

The gravitational parameter of Mars ia given as

$$
\mu_{6}=1.5066 \mathrm{E} 15 \mathrm{ft}^{3} / \mathrm{sec}^{2}
$$

For \quad Hohmann tranafer, firmt calculate the circular velocities of the two orbits:

$$
\begin{aligned}
& V_{c}=\sqrt{\frac{\mu \delta}{r}} \\
& V_{1}=\sqrt{\frac{1.5066 E 15 \mathrm{ft}^{2} / \mathrm{sec}^{2}}{12774573.5 \mathrm{ft}}}=10,859.7819 \mathrm{ft} / \mathrm{sec} \\
& V_{f}=\sqrt{\frac{1.5066 \mathrm{E} 15 \mathrm{ft}}{} / 13447178.5 \mathrm{sec}}
\end{aligned}
$$

Nov determine the semi-major axis of the transfer elilpse:

$$
a_{r}=x_{1} \cdot\left(r_{i}+r_{p}\right)=13,110,876 \mathrm{ft}(2157.82 \mathrm{n} \mathrm{mi})
$$

To obtain the propuleive burn required to leave the initial orbit, the Vis-Viva equation of astrodynamics (see trajectory analyeis section will be used. The reault is

$$
V_{r_{1}}=10,998.2401 \mathrm{ft} / \text { sec }
$$

The burn is found by subtracting the circular velocity from the velocity at the periapsis:

$$
\Delta V_{1}=V_{r_{1}}-V_{1}=138.4 \mathrm{ft} / \mathrm{sec}
$$

The epeed et the eponpsis and the propulsive burn required to achieve the final circular orbit are calculated in a mimiar manner:

$$
V_{r_{2}}=10,448.0164 \mathrm{ft} / \mathrm{sec}
$$

$$
\Delta V_{\mathrm{E}}=136.64 \mathrm{ft} / \mathrm{sec}
$$

Ueing these burns the mases of propeliant required for the tranefer can be calculated (the proper equation may be found in the section on the secondary propulsion system). First obtain the maes ratio for each $\Delta V:$

$$
\left(\frac{H_{1}}{H_{p}}\right)_{i}=1.0155 \quad\left\langle\frac{M_{1}}{M_{p}}\right\rangle_{\ell}=1.0153
$$

The final mase of the satellite in the obeervation is approximately 3500 lbm. Backing out the mees required by the second ΔV.

$$
\begin{aligned}
& H_{1}=H_{p}+M_{p} \\
& 1.0153 \cdot M_{p}=M_{p}+H_{p} \\
& 0.0153 \cdot(35001 \mathrm{bm})=M_{p} \\
& H_{p}=53.551 \mathrm{bm}
\end{aligned}
$$

Obtaining the propellant mane uaed in the firat ΔV with the same calculations,

$$
\begin{aligned}
& 1.0155 \cdot n_{f}=n_{f}+n_{\theta} \\
& 0.0155 \cdot n_{f}=n_{\theta} \\
& 0.0155 \cdot(35001 \mathrm{bm}+53.551 \mathrm{bm})=n_{\theta} \\
& n_{p}=55.081 \mathrm{bm}
\end{aligned}
$$

The total mame of propellant is

$$
\begin{aligned}
& M_{p_{T}}=M_{P}+M_{F} \\
& M_{p_{T}}=108.931 \mathrm{bm}
\end{aligned}
$$

Area for the Solar Array
The area of a solar array panel is calculated using

$$
A_{a}=\frac{P_{a}}{S \cdot \eta \cdot F \cdot \cos \Gamma} \quad(\text { ref } 5)
$$

where

```
P. = available pover (1500 vatts)
S = molar intenaity at Mars (54.14 mW/ft2) (5:410)
\eta= pover_output of_grray (9.6%)
F = mum-total of array design and degradation factors
                misc. amaembly and degradation 0.95
                radiation (for ailicon celle) '0.74
                configuration (flat plate array) 1.00
                F=2.69 (5:123-125)
                    \Gamma = angle betveen sun'e rays and the normal to the
                panel
                r=0
                cos \Gamma = 1
```

Calculation of the area yields

$$
A_{A}=\frac{1500 \mathrm{~W}}{\left(54.14 \mathrm{~W} / \mathrm{ft}^{2}\right) \cdot(0.096) \cdot(2.69) \cdot 1} \quad=108 \mathrm{ft}^{2}
$$

Calculation of approximate mass of mars lander

To calculate the approximate mase of Mara lander the masses of the major components of the lander muet be estimated. These major components are (1) the Sample Return Vehicle (SRV): (2) the rovers; (3) the automated laboratory; (4) an upper and lover aeromell; (5) a platform for the SRV to ait upon; (6) landing gear: and (7) a recovery gystem consisting of a solid rocket motor and three parachutes. Maes of the Sample Return Vehicle (SRV)

The mase of the solid rocket booster that will propel the SRV can be obtained from a program written to simulate the launch of a molid rocket boomter; booster apecifications include the fuel, payload, and planet of launch. This program, titled "Stages", can be ueed to etudy the effect of changing propellant mase on the final altitude and velocity achieved by the rocket. To use "Stagea" (listed in Appendix A), the following parameters for a launch must be knovn or assumed:

1. the combustion temperature of the propellant (${ }^{\circ}$)
2. the denaity of the propellant (lbm/ina)
3. the propellant crose-sectional diameter (feet)
4. the propellant burn rate (in/aec)
5. the specific heat ratio and perfect gas constant for the burning propellant
6. the radius of the planet (n.mi.), the latitude of launch eite (degrees). the enguler velocity of the planet surface, and the gravitational acceleration on the planet eurface
7. the deeired altitude efter launch
8. the mase of the final payload to be put into orbit.

The firet seven parametere vere deeignated for a launch from - pole of Mare of rocket propelied by the propeliant DB/APHMX/AL (Double Base/Aluminum Perchlorate-Cyclotetramethylene Tetrenitremine/Aluminum), selected for its high combuetion temperature (6700 degrees Rankine) and burn rate (. 55 in/sec). The rocket booster wes demigned to have a propeliant crose-sectional area of 2.91667 feet and deadveight ratio (ratio of booater non-propellant mese to total boonter mans) of 0.12. The desired orbit ves epecified to be circular at an altitude of 270.0 nauticel miles.

The eighth parameter (payload mase) vas designed to be a lightweight vesel that vould carry up to 100 lbm of Martian goil and air maples in o refrigereted chamber; on board the Ehip would be amall reaction control syatem and an aeroshell. The mas of this vehicle 1s etimated to be 1000.0 1bm 1200 1bm for the refrigeration chamber, 500 lbm for the reaction control system, 100 1bm of samples, 50 1bm for the aeroshell, and 150 lbm for onboard guidance and control computers).

Once theae parameters for the SRV launch have been apecified, "target burn time" (vhich is equal to the mase of propellant divided by the mass consumption ratel is entered into the "Stages" subroutine named "Launch". This subroutine is a numeri-

ORIGINAL PAGE IS
OF POOR QUALITY
cal integration of the equation of motion for aingle-stage rocket being launched in grevity field, and will fire for the entire "target burn time" uniess the propelient is completely consumed or the target altitude 1 reached. As the leunch proceeds, the macecrait is rotated through a pitch program". arbitrerily aelected to vary the direction of the rocket's weight vector ar $1 t \boldsymbol{s}$ ititude incresses.

To optimize the propeliant mass, and thus the initial mess of the SRV, five plots of data from "Stages" are constructed (see Appendix B). These plots shov:

1. Veriation of final altitude with terget burn time" (Figure B.1)
2. Variation of final velocity with "target burn time* (Figure B.2)
3. variation of payload ratio (payload mase/initial mase) with miarget burn time" (Figure B. 3)
4. Variation of "excese mase" (mase excluding payload maes after launch vith target burn time" (Figure B.4)
5. variation of final aceeleration with "target burn time" (Figure B. 5)

The first plot 18 used to determine a minimum value for "target burn time" (TBT) by observing that below a particular value for $T B T$ the deeired altitude is not reached due to inguificient propellant mase. The second plot is then used to find the range of values of $T B T$ above the minimum altitude value for which the final velocity is at least sufficient to achieve a circular orbit at the deeign altitude.

The third, fourth, and fifth plote are used to find the optimum value of TBT from the range of TBT values determined vith the firet two plota. An optimum payload ratio can be gelected from the third plot; an optimum "excess mase" can be melected Irom the fourth plot; and an optimum finsl acceleration can be selected from the fifth plot.

For the SRV the payload ratio vas optimized because the ratio vill yield a shorter and less maseive booster than the booster for which the inal acceleration is minimum. From Figure B. 1 the deeired altitude 1 reached for TBT greater than or equal to 350 seconds. From the second plot the required orbital velocity 1 echieved only for TBTE ranging from 100 to 460 seconds; therefore the optimum range of TBTE 1 Betveen 350 and 460 seconds. From the third plot the TBT for the highest payload retio 1 found to be 350 seconds. From the fourth plot excess mase is seen to be annimum for the optimum range at TBT of 350 seconds. From Figure B. 5 final acceleration is seen to be a maximum for the optimum range at TBT equal to 350 seconds.

The velue used for the payload ratio of the SRV, based upon optimization by use of Stages* is 0.068120. This ratio yields en initial SRV mase of approximately 14,700 1bm.

Mape of the Upper and Lover Aeroghell
The masses of the upper and lower aeroshell can be estimated by determining the approximate geometry of the aeroshella and selecting a material with which the aeroshells vili be made. The material that 18 selected for the shell must be strong enough to
vithetand large aerodynamic forces and aerothermodynamic heating incurred upon descent through the Martian atmosphere. The maximum temperature that vill occur on the lander during descent vill be located at the atagnation point of the vesael, which ia located at the center of the lower aeroshell. The stagnation point temperature that the lander encounters at an altitude of 100 nautical milea (calculated as 1630 degrees Rankine in Appendix C) is used to determine the type of material to be used for the upper and lover aeroahell (as first approximation).

An "outer blanket" of carbon-carbon heat-transfer resiatant tiles, or a one-piece carbon-carbon sheet, will cover the bottom of the lover aeroshell. The inner part of the lower aeroshell and the upper aeroshell vill be compoaed of CLAD 2014 aluminum alloy (density of . 101 lbm/in ${ }^{3}$). Modeling the upper aeroshell as a conic frustrum 23 feet high, with base diameter of 25 feet, a top diameter of meven feet, and a thickness of 30 inches, an approximate upper aeroshell volume of $233,989.7$ cubic inches and a mana of approximately 23,633.0 lbm are determined. Modeling the lover aeroshell as a segment of aphere with a base diameter of 25 feet, a eegment height of five feet, and a thickness of .30 inches yields an approximate lover aeroshield volume of 20,722 cubic inches and a masa of approximately 2093.0 lbw. Mase of Platform and Landing Gear

A metal diak twenty-five feet in diameter and one-half inch thickness is uaed to model the platform which the SRV, rovers, and autonomous laboratory sit upon; this platform has a volume
of 35,342 cubic inches. A strong material that can withstand the effecta of the exhaust plume of the launching SRV is needed to comprise the platform; AM-35S grainless ateel is chosen for its favorable resistance to high temperature and corrosion. AM-355 Etainless ateel has a density of $.282 \mathrm{lbm} / \mathrm{in}^{3}$, so the mass of the platform is approximately 9966 lbm.

Each strut of the landing gear wae modeled as a quarter-inch thick AM-35S stainleas eteel pipe, one foot in outer diameter and five feet long, fastened to a muare AM-35S stainless ateel pipe with aides four feet in length and thickness of one-half inch. The total volume of each strut is 1857 cubic inches and the total mase of each etrut is approximately 525 lbm. The landing gear syatem vill consiat of four metruts so the total landing gear maen is 2100 1bm.

Mags of the Rovers and Automated Laboratory

Each rovera is to be no more maseive than $2500 \mathrm{lbm}(5000 \mathrm{lbm}$ for the two rovers on each lander). The mass of the automated laboratory vill not exceed 1000 lbm.

Mase of the Lander Recovery System

The mase of the recovery aystem for the lander vas determined by use of a program written by D. Bell. The program calculates the optimum recovery syatem mass, consisting of one to aix parachutes and a solid fuel retrorocket, for a generic ve-
hicle of epecifiable mans (minu recovery system mess) that is landing on the turface of Earth or Mars. The program inputa are

1. the masi of the vehicle without recovery syetem
2. the desired terminal velocity for the main parachuter
3. the number of parechutes desired
4. the specific impulse, thrust, and mase fraction of the solid rocket motor used for descent
5. the required velocity upon impact with the planet murince
6. the desirmd height above the ground at which a constant-velocity descent of the vehicle begins (the rocket is fired such that the thrust equale the weight of the vehicle -- constant velocity falling height*)

A set of plots can be obtained by making eseries of runs of this program (see Figures D.1, D.2, D.3). These plots are used to optimize the main chute terminel velocity, impect velocity, constant velocity falling height, the wase of the parachute system, and the mase of the solid rocket motor required to land the vehicle.

The total (approximate) mass of a lander is found to be 58,500 1 bm , excluding the mase of the recovery system. A set of runs of the optimizing program vere made using this value of the vehicle mase; the results can be seen in the figures of Appendix D. The optimum main chute terminal velocity for this vehicle is determined to be 75 feet per second. The optimum impact velocity for the vehicle is 10 feet per second (assuming that the terminal velocity under consideration for the vehicle is the optimum value). The optimum constant velocity falling height is

Iive feet (eseuming that the terminal velocity and impact velocity are optimum values. The optimum recovery syetem mase for the lander (using the aforementioned variebles) is determined to

parachute gyetem mass	$=16101 \mathrm{bm}$
solid rocket motor mase	$=26391 \mathrm{bm}$
total recovery eystem mase	$=42491 \mathrm{bm}$

A more detailed breakdown of the mase of the recovery system is shown in Appendix D. This breakdown is the innal output of the optimizing progrem.

Statement of Approximate Total Mase of Marg Lander
As stated at the beginning of this section, the approximate total mess of the Mars lender is the sum of the masees of its mejor components:

COMPONENT

SRV
Upper Aeroahell
Lover Aeroshell 2,093
Platform 9,966
Landing Gear 2,100
Rover Systeme 5,000
Laboratory 1,000
Parachute System 1,610
Solid Rocket Motor 2,639

TOTAL APPROXIMATE LANDER MASS

Mass (lbm)

14,700
23,633

62, 749

LIST OF REFERENCES

1. Griminger G., E.P. Williams, and G. B. W. Yong. "Lift on Inclined Bodies of Revolution in Hypersonic Flow". Journat of the Aeronautical Sciences, Volume 17. Number 11, November 1950.
2. McNeely, Ralph. Professional Engineer, Preliminary Design, Propulaion Group. Marahall Space Fiight Center, Hunteville, Alabama. Personal communication.
3. Nichola, J.O., Ph.D. Professor, Aerospace Engineering Department. Auburn Univereity, Auburn, Alabama. Permonal sommunication.
4. Nicolai, Leland M. Fundamentala of Aircraft Desion. E.P. Domicone Printing Services: Fairborn, Ohio, 1975.
5. Raushenbach, H. S. Solar Cell Array Design Handbook. Van Moetrand Reinhold Co.: New York, 1980.
6. Space Shuttle News Reference. National Aeronautics and Space Administration.
7. Willcockson, W.H. Orbital Transfer Vehicle Concept Definition and System Analyeis Study: Volume X-Aerocapture for Manned Mars Missions. Martin Marietta Aeroapace, Denver, Colorado, 1987.

APPENDIX A

Computer Program for the Aerobraking Analyais

THIS PROGRAM RUNS THROUGH AN AEROBRAKE ANALYSIS OF MARS IMPUTS ARE MADE IN SI UMITS, AND OUTPUT IS WRITTEN IN ENGLISH UMITS

REAL HU, MASS, MASSE
OPEN(UNIT=7,FILE='AEROBRKE. DAT',STATUS='OLD')

PRINT*,' INPUT THE PERIAPSIS ALTITUDE IN km '
READ ($6, *$) PERIAP
dEFINE THE PERIAPSIS FROM THE CENTER OF MARS
PERIAP = PERIAP + 3393.5
PRINT*,'INPUT THE INITIAL SEMI-MAJOR AXIS IN km '
READ (6, *) AIMIT
PRINT*,'INPUT THE DESIRED APDAPSIS DISTANCE IN km '
READ (6, ©) APOAPF
CalCulate the time for the first 1.5 orbits before making
PERIAPSIS CHANGE (AT APOAPSIS) FOR AEROBRAKING PROCESS.
THE ELLIPTIC ORBIT FOR THIS PERIOD IS (500 km X 33363 km)
SMAJ1 $=.5$ ($(500 .+3393.5)+(33363 .+3393.5))$
THE GRAVITATIONAL PARAMETER MU (kg^3/sec^2)
MU $=42656$.
PI $=3.141592654$
PERD1 = 2*PI*SQRT(SMAJ1**3/HU)
TIME1 $=1.5 *$ PERD 1
calculate the paraheters of the elliptic orbit about hars USING THE PERIAPSIS FROM INPUT. THIS ORBIT IS ACTUALLY ONLY half an orbit, haking the journey from apoapsis to aerobraking
PERIAPSIS
PERIOD $=0.0$
$A P O A P=0.0$
CALL PARAMS(PERIAP, APOAP, AINIT, PERIOD)
PERDHR = PERIOD/3600.
DETERMINE THE TIME FOR THE HALF-ORBIT FROM THE APOAPSIS TO
THE PERIAPSIS OF aEROBRAKING
TIME2 $=.5=$ PERIOD
obtain the inputs for the aerobraking process
PRINT*,' INPUT THE ATMOSPHERIC DENSITY FOR THE ALTITUDE (kg/m^3)'
READ (6, *) RHO
PRINT*,'INPUT THE MASS OF THE SPACE VEHICLE (kg) '
READ ($6, *$) MASS
CONVERT THE MASS TO ENGLISH UNITS
MASSE $=$ RASS*32.174/14.57
PRINT*,'INPUT THE half-ANGLE OF THE CONICAL AEROBRAKE (deg) '
READ ($6, \bullet$) THETA
PRINT*,'INPUT THE DIAMETER OF THE AEROBRAKE (m) '
READ ($6, \bullet$) DIAM
DIAM $=$ DIAM/1000.
determine the area of the conical aerobrake
THETAR $=$ THETA*PI/180.
PART $=1 . /(T A N(T H E T A R) * * 2)$
AREA $=$ PI*(DIAM/2.)**2*SORT(1. +PART)
determine the drag coefficient of the aerobrake
based on kewtonian methods
CD $=2$. *SIN(THETAR)**2
CalCULATE THE ENGLISH-UNIT COUNTERPARTS OF THE ABOVE YaLUES
PERAPE $=$ PERIAP*3280. 839895
AINITE $=$ AINIT*3280. 839895
DIAME $=$ DIAM*3280. 839895
AREAE $=$ AREA $=10763910.42$

RHOE = RHO*0.0019435035
THE PERIAPSIS, APOAPSIS, SEMI-MAJOR AXIS, AND AEROBRAKE DIAMETER ARE CONVERTED FROM km TO ft. THE AREA IS CHANGED FROM kw^2 TO ft^2
AND THE DENSITY FROM kg/m^3 TO sluge/ft^3.
TIMTTL $=$ TIME1 + TIME2
TIMTLH $=$ TIMTTL/ 3600.
WRITE(7, ${ }^{\prime \prime}$
WRITE(7,*)'
WRITE $(7,)^{\prime}$
WRITE $(7,)^{\prime}$
WRITE(7,)' HALF-ANGLE FOR COMICAL AEROBRAKE (deg): ',THETA
WRITE $(7,)^{\prime}$ DIAMETER OF THE AEROBRAKE (ft): ',DIAME
WRITE $(7, *)$ SURFACE AREA OF THE AEROBRAKE (ft^2): ', AREAE
WRITE(7,*)' MASS OF SPACE VEHICLE (lb): ', MASSE
WRITE $(7, *)^{\prime}$
WRITE $(7,)^{\prime}$
WRITE(7,*)' ATMOSPHERIC CONDITIONS:
WRITE(7,*)' PERIAPSIS FROM CENTER OF MARS (ft): ', PERAPE
WRITE(7,*) DEMSITY (slug/ft^3): ', RHOE
WRITE $(7,)^{\prime}$
WRITE(7,*)' INITIAL ORBITAL PARAMETERS: -
WRITE (7,*)'
WRITE(7,130)
WRITE $(7,)^{\prime}$
WRITE(7,140) PERAPE, APOAPE, AINITE, PERDHR
WRITE(7,*)'
WRITE(7,*)'
WRITE(7,*)' APPROX TIME (hr) PRIOR TO AEROBRAKING: ', TIMTLH
WRITE(7,*)'
WRITE(7,*)'
WRITE(7,*)'
WRITE(7,*) AEROBRAKE PROCEDURE: "
WRITE(7,*)'
WRITE(7, 100)
WRITE 7,110)
WRITE(7, $)^{\circ}$
SET INITIAL CONDITIONS FOR VARIABLES PRIOR TO DO-LOOP
SMAJ = AINIT
$X=0.0$
$Y=0.0$
SEG $=0.0$
PHI $=0.0$
ASECTR $=0.0$
TIMTTL $=0.0$
DO $50 I=1,500$
ECCNTY = (APOAP-PERIAP)/(APOAP+PERIAP)
SMIN $=$ SQRT(SMAJ**2*(1.-ECCNTY**2))

CALCULATE THE INTERSECTION POINTS OF THE ELLIPTIC ORBIT
AND THE MARTIAN ATMOSPHERE
CALL NTRSEC(SMAJ, SMIN, ECCNTY, X, Y)
CalCulate the leng th of segment of the elliptic orbit ENCLOSED BY THE MARTIAN ATMOSPHERE

CALL SEGMNT (X, Y, SMAJ, ECCNTY, SEG, PHI, ASECTR)

THE SEMI-MAJOR AXIS IS THE "OLD" SEMI-MAJOR AXIS

Calculate the drag on the vehicle during the aerobraking process

UNITS ARE (KG*KH/SEC^2) AND (LB)
DRAG $=.5 * C D *(R H O * 1 . E 9) * V E L C T Y * 2 * A R E A$
DRAGE =.5*CD*RHOE*VLCTYE*2*AREAE
determine the time (in minutes) of the aerobrake passage
TIME = 2. *ASECTR*SQRT(SMAJ/MU)/SMIK
TIME $=$ TIME/60.
DETERMINE THE NEW SEMI-MAJOR AXIS
EKRGY1 = -HU/(2. ©SMAJ)
SMAJ $=-\mathrm{HU} /(-2$. .DRAG*SEG/MASS +2. *ENRGY1)
DETERMINE THE PARAMETERS OF THE NEW ELLIPTIC ORBIT
CALL PARAMS(PERIAP, APOAP, SMAJ, PERIOD)
PERIOD OF THE ORBIT IS IN HOURS PERDHR = PERIOD/3600.

CONVERT SI UNITS TO ENGLISH UNITS
SHAJE $=$ SMAJ*3280. 839895
APOAPE $=$ APOAP*3280. 839895
Check if the apoapsis is less than the radius of the MARTIAN ATMOSPHERE

IF (APOAP . LE. 3643.5) GO TO 80
45 WRITE (7, 120) I, PERAPE, APOAPE, SMAJE, PERDHR, DRAGE, TIME
IF (APOAP . LE. APOAPF) GO TO 60
TIMTTL $=$ TIMTTL + PERIOD
50 CONTINUE
IF (APOAP . GT. APOAPF) GO TO 85
determine the time to travel the half orbit from the aerobraking PERIAPSIS TO THE APOAPSIS.
60 TIMEPA $=.5 *$ PERIOD
a delta-y burn will be performed at the apoapsis to raise the PERIAPSIS TO 500 km . DETERMINE THE PERIOD OF THE NEW ORBIT, AND THE TIME TO TRAVEL FROM THE APOAPSIS TO THE PERIAPSIS.

SMAJAP $=.5 *((500 .+3393.5)+$ APOAP $)$
PERDAP $=2 . * P I * S Q R T(S M A J A P * * 3 / M U)$
TIMEAP $=.5 *$ PERDAP
IF (APOAP . EQ. APOAPF) THEN
PERDF = PERDAP
ELSE
GO TO 70
END IF
GO TO 75
because the final apoapsis from aerobraking is less than the desired apoapsis, a delta-y burn will haye to be applied at the periapsis to raise the apoapsis so that the final circular orbit is obtained THE PERIOD OF THIS ORBIT, AND THE TIME TO COMPLETE ONE ORBIT (THUS FINALIZING THE CIRCULARIZATION OF THE ORBIT ABOUT MARS) IS DETERMINED 70 SMAJF $=500 .+3393.5$

PERDF $=2 . * P I * S Q R T(S M A J F * * 3 / M U)$
75 TIMTL $=$ TIMTTL + TIMEPA + TIMEAP + PERDF
TIMHR $=($ TIMTL + TIME1 + TIME2 $) / 3600$.

WRITE $(7, \bullet)$ 'TIME BREAKDOWN (hrs):
WRITE(7,*) TIME TO INITIALIZE ORBIT:
WRITE(7,.)' TIME TO TRAYEL FROM APOAP TO PERIAP: ', TIME2/3600.
WRITE(7,*) TIME FOR AEROBRAKING PASSAGE: \quad,TIMTTL/3600.
WRITE $(7, \bullet)$ TIME TO TRAVEL FROM PERIAP TO APOAP: ', TIMEPA/3600.
WRITE(7,*)' TIME TO TRAYEL FROM APOAP TO PERIAP: ', TIMEAP/3600.
WRITE(7,*) TIME FOR 1 ORBIT AFTER CIRCULARIZE: ', PERDF/3600.
WRITE(7,*).
WRITE(7,*) TOTAL TIME FOR AEROBRAKING PROCESS: ',TIMHR
PRINT*, I
PRINT*, 'AEROBRAKING TIME= ', (TIMTL+TIME1+TIME2)/3600.
PRINT*, 'PER TO APO= ', TIMEPA/3600.
PRINT*, 'APO TO PER= ',TIMEAP/3600.
PRINT*,'ORBIT AFTER CIRCULARIZATION= ',PERDF/3600.
GO TO 90
80 WRITE(7,*)'AEROBRAKING IS NOT POSSIBLE FOR THIS PERIAPSIS'
GO TO 90
85 WRITE(7, ©)'FINAL APOAPSIS HAS NOT BEE KEACHED'

```
130 FORMAT(3X,'PERIAPSIS (ft)',6X,'APOAPSIS (ft)',6x,
```

 1 'SEMI-MAJOR AXIS', \(5 \times\), 'PERIOD (hrs)')
 140 FORMAT(2X, F15. 5, 5X, F15. 5, 5X, F15. 5, 5X, F11.5)
100 FORMAT(4X,'PASS', 5X, 'PERIAPSIS', 7X, 'APOAPSIS', 7X,
1 'SEMI-MAJOR', 4X, 'PERIOD', 7X, 'DRAG', 8X, 'PASSAGE')

1 5x,'(hrs)',7x,'(lb)',7x,'TIME (min)')
120 FORMAT(4X, I3, 5X, F13. 3, 3X, F13. 3, 3X, F13.3, 3X, F7. 3, 3X, F10. 3, 4X, F8. 3)
90 CLOSE (UNIT = 7)
STOP
END

SUBROUTINE PARAMS(RP, RA, A, PERD)
this subroutine calculates the apoapsis and period of the ELLIPTIC ORBIT, USING THE Yalues of the periapsis and semimajor axis from the main progran

THE PERIAPSIS, APOAPSIS, AND SEMI-MAJOR AXIS ARE IN km THE PERIOD IS IN sec, THE GRAVITATIONAL PARAMETER IS (km^3/sec^2)

REAL MU
$R A=2 . * A-R P$
$P I=3.141592654$
MU $=42656.0$
PERD $=2 . *$ PI*SQRT(A**3/MU)
RETURN
END
SUBROUTINE NTRSEC(A, B, E, X, Y)
THIS SUBROUTINE CALCULATES THE POINTS OF INTERSECTION OF THE SPACE VEHICLE'S ELLIPTIC ORBIT AKD THE ATMOSPHERE'S CIRCULAR ORBIT, USING THE SEMI-MAJOR AXIS AND THE ECCENTRICITY FROM THE main program, and the semi-minor axis from subroutine params

```
RADIUS = 250.+3393.5
XI = 2.*A*E
X2A = 4.*A**2*E**2
X2B = 4.*(B**2-RADIUS**2+A**2*E**2)*(1.-B**2/A**2)
X2 = SQRT(X2A-X2B)
X3 = 2*(1,-B**?/A**2)
THE INTERSECTION POINTS OF THE ELLIPTIC ORBIT ARE X AND Y
\(X=(X 1-X 2) / X 3\)
\(Y=\operatorname{SORT}(\) RADIUS**2-(X-A*E)**2)
```


RETURN

```
END
```


SUBROUTIKE SEGMNT (X,Y, A, E, SEG, PHI, AREA)

this subroutine calculates the leng hi of the segment (km) of the SPACE VEHICLE'S ELLIPTIC ORBIT BOUNDED BY THE MARTIAN ATMOSPHERE USING THE IMTERSECTION POINTS, SEMI-MAJOR AXIS, AND ECCENTRICITY FROM THE MAIN PROGRAM
$C=2 . * Y$
$D=X-A+E$
$R=\operatorname{SQRT}(D * * 2+Y * * 2)$
phi is the argle of the bounded segment, and area is the area OF THE BOUNDED PORTION OF THE ORBIT

PHI = 2.*ATAN(C/(2.*D))
SEG $=$ R*PHI
AREA $=.5 *$ R*SEG
RETURN
END

ORIGINAL PAGE IS OF. POOR QUALITY

HALF-ANGLE FOR CONICAL AEROBRAKE (deg): 70.00000000 DIAMETER OF THE AEROBRAKE (ft): 95. 00000000
SURFACE AREA OF THE AEROBRAKE (ft^2): 7543. 12402000
mass of space vehicle (lb): 200000.00000000

ATMOSPHERIC CONDITIONS:
PERIAPSIS FROM CERTER OF MARS (ft): 1.14484910E+07
DENSITY (slug/ft^3): 2.42937948E-10

INITIAL ORBITAL PARABETERS:

PERIAPSIS (ft)	APOAPSIS (ft)	SEMI-MAJOR AXIS	PERIOD (hrs)
11448491.00000	120592192.00000	66020340.00000	24.12273

APPROX TIME (hr) PRIOR TO AEROBRAKING:
48. 79166030

AEROBRAKE PROCEDURE:

$\begin{aligned} & \text { PASS } \\ & \text { NUMBER } \end{aligned}$	PERIAPSIS (ft)	APOAPSIS (ft)	SEMI-MAJOR AXIS (ft)	PERIOD (hrs)	DRAG (lb)	$\begin{aligned} & \text { PASSAGE } \\ & \text { TIME (min) } \end{aligned}$
1	11448491.000	113458000.000	62453248.000	22.194	388.908	11.691
2	11448491.000	107067800.000	59258144.000	20.513	386. 799	11.762
3	11448491.000	101310824.000	56379656.000	19.037	384.695	11.835
4	11448491.000	96097224.000	53772856.000	17.732	382.594	11.909
5	11448491.000	91353344.000	51400916.000	16.572	380.499	11.983
6	11448491.000	87018344.000	49233416.000	15.535	378.407	12.060
7	11448491.000	83041360.000	47244924.000	14.603	376. 319	12.137
8	11448491.000	79379664.000	45414076.000	13.762	374.235	12.216
9	11448491.000	75997080.000	43722784.000	13.001	372.155	12.296
10	11448491.000	72862736.000	42155612.000	12. 308	370.079	12.378
11	11448491.000	69950144.000	40699320.000	11.676	368.006	12.461
12	11448491.000	67236472.000	39342480.000	11.097	365.937	12.546
13	11448491.000	64701880.000	38075184.000	10.565	363.872	12.633
14	11448491.000	62329112.000	36888804.000	10.075	361.810	12.721
15	11448491.000	60103032.000	35775760.000	9.623	359.751	12.811
16	11448491.000	58010348.000	34729420.000	9.204	357.695	12.902
17	11448491.000	56039316.000	33743904.000	8.815	355.642	12. 996
18	11448491.000	54179508.000	32813998.000	8.453	353.592	13.091
19	11448491.000	52421676.000	31935084.000	8.115	351.545	13.188
20	11448491.000	50757564.000	31103028.000	7.800	349.501	13.288
21	11448491.000	49179764.000	30314128.000	7.505	347.459	13.389
22	11448491.000	47681636.000	29565064.000	7.229	345.419	13.493
23	11448491.000	46257200.000	28852846.000	6. 969	343.382	13.599
24	11448491.000	44901056.000	28174772.000	6.725	341.347	13.708
25	11448491.000	43608300.000	27528396.000	6.495	339.314	13.819
26	11448491.000	42374508.000	26911498.000	6.278	337.282	13.933
27	11448491.000	41195628.000	26322060.000	6.073	335.252	14.050
28	11448491.000	40067988.000	25758238.000	5.879	333.224	14.169
29	11448491.000	38988220.000	25218354.000	5.695	331.197	14.292

31	11448491.000
32	11448491.000
33	11448491.000
34	11448491.000
35	11448491.000
36	11448491.000
37	11448491.000
38	11448491.000
39	11448491.000
40	11448491.000
41	11448491.000
42	11448491.000
43	11448491.000
44	11448491.000
45	11448491.000
46	11448491.000
47	11448491.000
48	11448491.000
49	11448491.000
50	11448491.000
51	11448491.000
52	11448491.000
53	11448491.000
54	11448491.000
55	11448491.000
56	11448491.000
57	11448491.000
58	11448491.000
59	11448491.000
60	11448491.000
61	11448491.000
62	11448491.000
63	11448491.000
64	11448491.000
65	11448491.000
66	11448491.000
67	11448491.000
68	11448491.000
69	11448491.000
70	11448491.000
71	11448491.000
72	11448491.000
73	11448491.000
74	11448491.000
75	11448491.000
76	11448491.000

36960228.000 36006576.000 35089896.000 34207976. 000 33358782.000 32540420.000 31751138. 000 30989304. 000 30253406. 000 29542030.000 28853862. 000 28187662. 000 27542282. 000 26916638. 000 26309712.000 25720544. 000 25148234. 000 24591922. 000 24050806. 000 23524116.000 23011118.000 22511124.000 22023460.000 21547492. 000 21082604. 000 20628198. 000 20183694.000 19748528. 000 19322144.000 18903988. 000 18493504. 000 18090140. 000 17693322.000 17302464.000 16916940.000 16536080. 000 16159161. 000 15785364.000 15413744. 000 15043186. 000 14672308. 000 14299343. 000 13921898. 000 13536531.000 13137854.000 12716375. 000
24204360.000 23727534. 000 23269194. 000 22828234. 000 22403636. 000 21994456.000 21599814. 000 21218898.000 20850948. 000 20495260. 000 20151176. 000 19818076. 000 19495386. 000 19182564. 000 18879102. 000 18584518. 000 18298362.000 18020206. 000 17749648.000 17486302.000 17229804.000 16979808. 000 16735976.000 16497992. 000 16265547. 000 16038344.000 15816093.000 15598510.000 15385327.000 15175239.000 14970998.000 14769316.000 14570907.000 14375477.000 14182715.000 13992285.000 13803826. 000 13616927.000 13431118. 000 13245838. 000 13060399.000 12873917.000 12685194. 000 12492511.000 12293172. 000 12082433. 000
5. 355
5. 197
5.048
4. 905
4.769
4.639
4.514
4.395
4.282
4.172
4.068
3. 967
3. 871
3.778
3.689
3.603
3.520
3. 440
3.363
3. 288
3.216
3.146
3.079
3.013
2. 950
2. 888
2.829
2.770
2.714
2.659
2.605
2. 552
2. 501
2. 451
2. 402
2.354
2. 306
2. 260
2.213
2. 168
2.122
2.077
2.032
1.986
1.938
1.889
327.146
14.546
14.679
14.815
14.955
15.099
15.247
15.400
15.557
15.720
15.887
16.061
16.240
16.426
16.619
16.818
17.026
17.242
17.467
17.701
17.946
18.202
18. 470
18.752
19.048
19.360
19.690
20.039
20.409
20.804
21.225
21.677
22. 164
22. 690
23. 261
23.886
24. 574
25. 337
26. 190
27.155
28. 260
29. 547
31.074
32. 934
35.280
38.391
42.842

TIME TO INITIALIZE ORBIT:
TIME TO TRAVEL FROM APOAP TO PERIAP: TIME FOR AEROBRAKING PASSAGE:

TIME TO TRAVEL FROM PERIAP TO APOAP: TIME TO TRAVEL FROM APOAP TO PERIAP: TIME FOR 1 ORBIT AFTER CIRCULARIZE:
36. 73029330
12. 06136420
472. 14114400
0. 94430298

1. 02305233
2. 05304074

APPENDIX B

Optimization of Propellant Mans of a Solid-Propellant Rocket

```
*****************************************************************
MIKE LISANO
AUEURN UNIVERSITY AEROSPACE ENGINEERING SENIOR DESIGN PROJECT
UNFANNED MARS MISSION
"STAGES"
PrCGRAM TO OPTIMIZE THE PROPELLANT MASS OF A SOLID-PROPELLANT ROCKET LAUNCHING IN AN ARBITRARY GRAVITY FIELD FOR A GIVEN DESIRED OREIT (PITCH PROGRAM INGLUDED)
```



```
COMMON/ROCK/TCCMS/DF/DIA/BR/GAMMA/RGAS/GC
COMMON/PLAN/GRAV,R,A/OMEGA,RAD,ALAT
COMMON/LAUN/V(610),G(610), H(61C),AM(610), DELV(610),ACC(610)
UNIT CONVERSION FACTOR GC (LBM-FT/LBF-SEC**2)
GC=32.174
```



```
SPECIFICATIONS OF ROCKET:
(CCMEUSTION TEMPERATURE OF PROPELLANT, DEGREES RANKINE)
TCCMB=6700.
(DENSITY OF FUEL, LBM/IN**?)
DFE. 065
(PROPELLANT CROSS-SECTION DIAMETER, FT)
FDIA \(=2.91607\)
DIA \(=F D I A * 1<.0\)
(PFOPELLANT BURN RATE, IN/SEC)
\(B R=0.55\)
(SFECIFIC HEAT RATIO OF BURNING PROPELLANT (DEFAULT:AIR))
GAMMA=1.4
(PERFECT GAS CONSTANT OF BLRNING PROPELLANT (DEFAULT:AIR),
FT-LBF/LBM-R)
RGAS \(=53.3\)
(DEADWEIGHT RATIO OF BOOSTER)
DWRAT \(=.12\)
(MASS CF PAYLOAD TO BE CARRIED INTO OREIT, LEM)
\(A M F=1000.0\)
```



```
DATA FOR LAUNCH:
(RADIUS OF PLANET, N MI)
RAC= 1841.05
(LATITUDE OF LAUNGH SITE, DEGREES)
DLAT \(=0.0\)
ALAT \(=0\) LAT/23. 295773
(ANGULAR VELOCITY OF PLANET, RAD/SEC)
OMEGA \(=.000 L 7\)
(DESIRED ALTITUDE, N MI)
\(A L T=27 \mathrm{C} .0\)
\(H F=A L T * 608 U\).
```

```
        (TCTAL HEIGHT, FT)
        R=(RAD*608U.)+HF
        (SEMI-MAJOR AXIS OF DESIRED OREIT, N MI (DEFAULTS TO A=R))
        SMA= RAD+ALT
        A=SMA*6080.
        ggravitational acceleration on the surface of the planet,
        FT/SEC**2)
    GSLRF=12.3s2
    (GRAVITATICNAL PARAMETER OF PLANET IN FT**3/SEC**2)
    GRAV=1.506)E15
```


WRITE(6,11U)
FORMAT(///,3X,'OPTIMIZATION OUTPUT:')
SUEROUTINE "ROCKET" CALCULATES THE EXHAUST VELOCITY (C) AND TIME
RATE OF CHANGE OF MASS (DMDT) OF THE ROCKET:
CALL ROCKET(C,DMDT)
WRITE(6,111) G,DMDT
11 FORMAT (//, SX, 'EXHAUST VELOCITY CF ROCKET =',F12.3.1X, FT/SEC',
*//.3X,'PROPELLANT CONSUMPTION RATE $={ }^{\circ}, F 12.6,1 X,{ }^{\prime}$ LBM/SEC')
SUEROUTINE "SPEEDS" CALCULATES THE SPEED of the rocket due
to planetary spin before takeoff, and the speed of the
ROCKET IN THE DESIRED OREIT:
CALL SPEEDS(VSURF,VORB)
WRITE (6,11 L) VSURF,ALT,VORB
FORMAT (//,SX, 'VELOCITY OF PLANET SURFACE =1,F12.3,1X,'FT/SEC',
*//.3X,'DESIRED ORBIT ALTITUDE = 'F12.3.1X,'N MI',//,3X,
*'VELOCITY UF ROCKET IN DESIRED ORBIT =',F12.3,1X,'FT/SEC')
suer outine "launch" calculates the total change in speed and
CHANGE IN ALTITUDE OF A SINGLE STAGE ROCKET BEING LAUNGHED IN
THE GRAVITY FIELD OF A GIVEN PLANET. AERODYNAMIC FORCES ON THE
rocket have geen neglected. the initial mass of the rocket is
INCREMENTED FROM THE MASS REQUIRED FOR A TEN MINUTE BURN TO THAT
reguired tu reach the desired altitude (hf) and velocity (vorb).
CALL LAUNCH(DWRAT,VSURF,GSURF,AMF,DMDT,C,HF,RAD,VORB)
STCP
END

SUEROUTINE ROCKET(C,DMDT)
COMMCN/ROCX/TCOMB/DF,DIA/BR,GANMA,RGAS,GC
$A=(3.14159<7 *(D I A * * 2)) / 4$.
$D M D T=A * D F * E R$
$C=S Q R T((2 . * G A M M A * R G A S /(G A M M A-1)) * G C * T C O M B$.
RETURN
END****************************
COMMON/PLAN/GRAV,R,A,OMEGA/RAD,ALAT
VSLRF=CMEGA*RAD*6080.*COS(ALAT)
VORB=SCRT(GKAV*((2./R)-(1./A)))
RETURN
END

SURROUTINE LAUNCH(DWRAT,VSURF,GSURF,AMF,DMDT,C,HF,RAD,VORB)
COMMON/LAUN/V(610),G(610),H(610),AM(610),DELV(610),ACC(610)
TAFGET BURN TIME (SEC). . . DETERMINES INITIAL MASS AM(1)
TBURN=350.L
TIME INCREMENTS (SEC)

 DT=1.0
 \(T=C .0\)
 \(A M(1)=((T B U R N * D M D T) /(1.0-D h R A T))+A M F\)
 \(A M F F=(A M(1 ;-A M F) \star D W R A T+A M F\)
 \(V(1)=V\) SURF
 DELV (1) \(=0.0\)
 \(G(1)=G S U R F\)
 \(H(1)=0.0\)
 DTHET=0.0
 \(I=1\)
 $I=I+1$
$T=T+D T$
THET=DTHET/57.29578
$A M(I)=A M(I-1)-(D M D T * D T)$
IF (AM(I).LT.AMFF)GOTO 1900
$\operatorname{CELV}(I)=C * \operatorname{LOG}(A M(I-1) / A M(I))-(G(I-1) \star \operatorname{COS}(T H E T) \star D T)$
$V(I)=V(I-1)+\operatorname{DELV}(I)$
$H(I)=H(I-1)+(((V(I)+V(I-1)) / 2) * D T) * S I N.(T H E T)$
$G(I)=G S U R F *((R A D * 6080) * * 2) /.(((R A D * 6080)+.H(I)) * * 2)$
ACC(I) =DELV(I)/(DT*32.174)
PITCH PROGRAM (ARBITRARY, FIVE STEP, INITIAL THETA = O DEG..
FINAL THETA = 90 DEG.)
IF(H(I).GE.HF)GOTO 1900
IF (H(I).GT.(HF*.4))GOTO 18 CO
IF (H (I). GT.(HF*.15))GOTO 1700
IF(H(I).GT.(HF*.05))GOTO 1 ЄOO
IF (H(I).GT.(HF*.01))GOTO 1500
OTHE T=45.0
GOTO 1 CO
DTHET= 65.0
GOTO 1 CO
DTHET=80.0
GOTO 100
DTHET= 85.0
GOTO 100

```
VEL=V(I-1)
HT=H(I-1)/0080.
AC=ACC(I-1)
AMM=AM(I-1)
PR=AMF/AM(1)
TPR=AM(I-1)/AM(1)
EXC=AM(I-1)-AMF
WRITE(6,21<)TBURN,AM(1),T,VEL,HT,AC,AMM,PR,TPR,EXC
    FORMAT(//,SX,'DATA FOR SINGLE-STAGE ROCKET LAUNCH:',
*//,3X,'THE TARGET TIME OF QURN IS ',F8.3,1X,'SEC',
*/f,3X,'THE INITIAL MASS OF THE ROCXET IS ',F12.3.1X,'LBM',
*//,3X,'THE TOTAL TIME OF BURN IS ',F8.3.1X,'SEC',
*//.3X,'THE FINAL VELOCITY IS ';F12.3,1X,'FT/SEC',
*//,3X,'THE FINAL ALTITUDE IS ',F12.4,1X,'N MI',
*/|,3X,'THE FINAL ACCELERATION IS ',F6.2,1X,'GS',
*//.3X,'THE FINAL MASS OF THE ROCKET IS ',F12.3.1X,'LBM',
*//,3X,'THE DESIGN PAYLOAD RATIO OF THE ROCKET IS ',F9.6.
*//.3X,'ACTUAL FINAL MASS/IAITIAL MASS IS ',F9.6,
*//,3X,'THE EXGESS MASS After fIRING IS ',F12.3.1X,'LBM')
```

RETURN
ENO

```
EXHAUST VELOEITY OF ROCKET = 8968.144 FT/SEC
PROPELLANT CONSUMPTION RATE = 34.395610 LBM/SEC
VELOCITY CF PLANET SURFACE = 783.551 FT/SEC
DESIRED ORBIT ALTITUDE = 270.0CO N MI
VELOCITY CF ROCKET IN DESIRED ORBIT = 10833.867 FT/SEC
DATA FOR SINGLE-STAGE ROCKET LAUNCH:
THE TARGET TImE OF BURN IS 250.0CO SEC
THE INITIAL MASS OF THE ROCKET IS 10771.480 LBM
THE TCTAL TIME OF BURN IS 250.00C SEC
THE FINAL VELOCITYIS 14047.491 FT/SEC
THE FINAL ALTITUDE IS 210.3703 N MI
THE FINAL ACCELERATION IS 4.35 GS
THE FINAL MASS OF THE ROCKET IS 2172.578 LBM
THE DESIGN PAYLOAD RATIO OF THE ROCKET IS 0.092838
ACTUAL FINAL MASS/INITIAL MASS IS 0.201697
THE EXCESS MASS AFTER FIRING IS 1172.578 LBM
```

OPTIMIZATION CUTPUT:

EXHAUST VELOCITY OF ROCKET $=8968.144 \mathrm{FT} / \mathrm{SEC}$ PROPELLANT CONSUMPTION RATE $=34.395610$ LBM/SEC

VELOCITY OF PLANET SURFAGE $=783.551$ FT/SEC

 DESIRED ORBIT ALTITUDE $=\quad 270.000 \mathrm{~N} \mathrm{MI}$VELOCITY CF RUCKET IN DESIRED ORBIT = 10833.867 FT/SEC

DATA FOR SINGLE-STAGE ROCKET LAUNCH:
the target time of burn is 350.000 sec
THE INITIAL MASS OF THE ROCKET IS 14680.072 LBM
THE TCTAL TIME OF BURN IS 336.000 SEC
THE FINAL VELUCITY IS 13328.603 FT/SEC
THE FINAL ALTITUDE IS 268.7500 N MI
the final acceleration is 3.C3 gs
THE FINAL MASS OF THE ROCXET IS 3123.147 LBM
THE DESIGN PAYLOAD RATIO OF THE ROCKET IS 0.068120
ACTUAL FINAL MASS/INITIAL MASS IS 0.212747
THE EXCESS MASS AFTER FIRING IS 2123.147 LBM

OPTIMIZATION UUTPUT:

EXHAUST VELOCITY OF ROCKET $=8968.144$ FT/SEC
PROPELLANT CONSUMPTION RATE $=34.395610$ LBM/SEC

VELOCITY CF PLANET SURFACE $=\quad 783.551$ fT/SEC
DESIRED OREIT ALTITUDE $=\quad 270 . C C O N$ MI
VELOCITY CF RCCKET IN DESIRED CRBIT $=10833.867 \mathrm{FT} / \mathrm{SEC}$

DATA fOR SINGLE-STAGE ROCKET LAUNCH:
the target fire of burn is 450.000 sec
THE INITIAL MASS OF THE ROCKET IS 18588.664 LBM
the tctal time of burn is 394.000 sec
THE FINAL VELUCITY IS 10955.684 FT/SEC
THE FINAL ALTITUDE IS 268.4356 N MI
THE FINAL ACCELERATION IS 1.37 GS
THE FINAL MASS OF THE ROCKET IS 5036.794 LBM
THE DESIGN PAYLOAD RATIO OF THE ROCKET IS 0.053796
ACTUAL FINAL MASS/INITIAL MASS IS 0.270961
THE EXCESS MASS AFTER FIRING IS 4036.794 LBM

FIGURE B. 1
FINAL A!TITUDE VS. "DESIGN BURN TIME"

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE B. 2
FINAL VELOCITY VS. "DESIGN BURN TIME"

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE B. 3
Payload ratio vs. "design burn time"

FIGURE B. 4
EXCESS MASS VS. "DESIGN BURN TIME"

ORIGINAL Page is OF POOR QUALITY

FIGURE B. 5
FINAL ACCELERATION VS. "DESIGN BURN TIME"

APPENDIX C

Calculation of Stagnation Temperature on Mare Lander

Apply the method of Nicolat (5:4.6):
From Stefan' ${ }^{\text {E }}$ Law.

$$
T_{n}=\left(\frac{\dot{q}_{E n}}{\epsilon \cdot \sigma_{80}}\right)^{.25}
$$

where $T_{\text {. }}$ is the temperature at the etagnation point of the body (degreen Rankine)
 (Btu/fta /aec)

E \quad : the emianivity of the fluid
Os. is the Stefen-Boltzman conatant (. 481 E-12 Btu/ft/Eec/or)

For the atmomphere of Mara the eminaivity is amaned to be approximately the same value as the emiseivity of the Earth's atmomphere, or

$$
\epsilon=0.8
$$

For the flow-body myetem to be in equilibrium, the heat radiated to the body must equal the heat convected from the body to the flow:

$$
\dot{q}_{a n \theta}=\dot{q}_{c \theta n v}
$$

An empirical formula from Micolai allove the calculation of the convective heat flux:

```
            Gcenr = 15:(\frac{for}{R}\mp@subsup{)}{}{5}\cdot(\frac{\mp@subsup{U}{\infty}{\prime}}{1000}\mp@subsup{)}{}{3}\cdot\operatorname{coses}\Delta
Where 的 = {reestream denaity (sluga/ft`)
    u = freentream velocity (ft/mec)
    R = radius of curvature of the nose (ft)
    | = mveep angle of wing leading edge (zero degrees)
```

At an altitude of 100 nautical miles the denaity of the Martian atmomphere ia determined:

$$
\begin{aligned}
& \rho_{100 \text { nmio }}=\frac{P_{100} \text { n.mi }}{R_{\mathrm{CO}_{2}} \cdot T_{100 \mathrm{mani}}} \\
& \text { where } \mathrm{R}_{\mathrm{CO}_{2}}=35.10 \mathrm{It} \cdot 1 \mathrm{bI} /\left(1 \mathrm{bm} \cdot{ }^{\circ} \mathrm{R}\right) \\
& T_{100 \text { n.mi }}=324.6{ }^{\circ} \mathrm{R} \\
& P_{100 \text { num }}=0.00428371 b 1 / I t^{2}
\end{aligned}
$$

The values of T and P were obtmined from Viking data.

The velocity at 100 neutical miles was etimated by memming that the epecific total mechanical energy of the lander at 100 nautical mile is the same the specific total mechanicel energy at 270 neutical wiles. This ameumption implies that no work 1 done by drag forces, which vould decrease the total energy of the lander. Thus the velocity eftimate is highs

$$
u_{\infty}=11,744 \pm t / \sec
$$

This estimate leads to convective heat flux of
end a stagnation temperature of

$$
T_{\omega}=1630{ }^{\circ} R
$$

APPENDIX D

Optimization of Recovery Syetem Mase For Mars Lander:

Weight Statement

Parachute System Weight 1610
Filot Chute 8
Drogue Chute 224
Misc. Straps 69
Main Parachute
Support Structure 76
Main Farachute. 391 X 3
Fittings and Flotation 59
SRM Weight 26.39
Fropellant. 2243
Case Weight 396
Recovery System Total Weight 4249
Basic Vehicle Weight 58500
Total Vehicle Weight (Fieentry) 62749
Performance Characteristics
Parachute System
SRM

1 pilat a 11.7 ft. diameter 1 drogue a 54.4 ft diameter 3 mains a 129.7 ft . diameter 75 fps terminal velocity

