14 research outputs found
The Multi-Component Nature of the Vela Pulsar Nonthermal X-ray Spectrum
We report on our analysis of a 274 ks observation of the Vela pulsar with the
Rossi X-Ray Timing Explorer (RXTE). The double-peaked, pulsed emission at 2 -
30 keV, which we had previously detected during a 93 ks observation, is
confirmed with much improved statistics. There is now clear evidence, both in
the spectrum and the light curve, that the emission in the RXTE band is a blend
of two separate non-thermal components. The spectrum of the harder component
connects smoothly with the OSSE, COMPTEL and EGRET spectrum and the peaks in
the light curve are in phase coincidence with those of the high-energy light
curve. The spectrum of the softer component is consistent with an extrapolation
to the pulsed optical flux, and the second RXTE pulse is in phase coincidence
with the second optical peak. In addition, we see a peak in the 2-8 keV RXTE
pulse profile at the radio phase.Comment: 12 pages, 3 figures, accepted for publication in Astrophysical
Journa
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope
Globular clusters with their large populations of millisecond pulsars (MSPs)
are believed to be potential emitters of high-energy gamma-ray emission. Our
goal is to constrain the millisecond pulsar populations in globular clusters
from analysis of gamma-ray observations. We use 546 days of continuous
sky-survey observations obtained with the Large Area Telescope aboard the Fermi
Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular
clusters. Steady point-like high-energy gamma-ray emission has been
significantly detected towards 8 globular clusters. Five of them (47 Tucanae,
Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices and clear evidence for an exponential cut-off in the range
1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission
from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral
indices , however the presence of an exponential cut-off
can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC
6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral
properties. From the observed gamma-ray luminosities, we estimate the total
number of MSPs that is expected to be present in these globular clusters. We
show that our estimates of the MSP population correlate with the stellar
encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters,
commensurate with previous estimates. The observation of high-energy gamma-ray
emission from a globular cluster thus provides a reliable independent method to
assess their millisecond pulsar populations that can be used to make
constraints on the original neutron star X-ray binary population, essential for
understanding the importance of binary systems in slowing the inevitable core
collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J.
Kn\"odlseder, N. Webb, B. Pancraz
Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope
We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models
OSSE Observations of Starburst Galaxy M82
OSSE observed the starburst galaxy M82 in two viewing periods of 8 and 14 days. M82's priority as a target had been established on the grounds that the average supernova rate may be very high there, so that a significant chance of 56 Co detection exists. If M82 is at 3.4 Mpc distance, normal Type II (e.g. SN1987A) are too dim in 56 Co lines, but the Wolf-Rayet derived Type Ib, which are also massive-star core implosion objects, might be detectable to OSSE. 1;2 Expected fluxes of the 847 keV fl- line of 56 Co would be near (2-5)2 10 05 fl cm 02 s 01 . A Type Ia in M82 would be very bright, 3 near (3-6)210 04 fl cm 02 s 01 . We present OSSE background subtracted spectra of the M82 region for viewing periods 7 and 18. These spectra show no significant excess at 847 keV or at 1238 keV, the two strongest 56 Co fl-lines. When we fit a smooth gamma continuum plus a feature having both the 847 keV and 1238 keV lines to the OSSE data, we obtain for the 847 keV line ampl..
Protected carotid-artery stenting versus endarterectomy in high-risk patients
BACKGROUND: Carotid endarterectomy is more effective than medical management in the prevention of stroke in patients with severe symptomatic or asymptomatic atherosclerotic carotid-artery stenosis. Stenting with the use of an emboli-protection device is a less invasive revascularization strategy than endarterectomy in carotid-artery disease.
METHODS: We conducted a randomized trial comparing carotid-artery stenting with the use of an emboli-protection device to endarterectomy in 334 patients with coexisting conditions that potentially increased the risk posed by endarterectomy and who had either a symptomatic carotid-artery stenosis of at least 50 percent of the luminal diameter or an asymptomatic stenosis of at least 80 percent. The primary end point of the study was the cumulative incidence of a major cardiovascular event at 1 year--a composite of death, stroke, or myocardial infarction within 30 days after the intervention or death or ipsilateral stroke between 31 days and 1 year. The study was designed to test the hypothesis that the less invasive strategy, stenting, was not inferior to endarterectomy.
RESULTS: The primary end point occurred in 20 patients randomly assigned to undergo carotid-artery stenting with an emboli-protection device (cumulative incidence, 12.2 percent) and in 32 patients randomly assigned to undergo endarterectomy (cumulative incidence, 20.1 percent; absolute difference, -7.9 percentage points; 95 percent confidence interval, -16.4 to 0.7 percentage points; P=0.004 for noninferiority, and P=0.053 for superiority). At one year, carotid revascularization was repeated in fewer patients who had received stents than in those who had undergone endarterectomy (cumulative incidence, 0.6 percent vs. 4.3 percent; P=0.04).
CONCLUSIONS: Among patients with severe carotid-artery stenosis and coexisting conditions, carotid stenting with the use of an emboli-protection device is not inferior to carotid endarterectomy