25 research outputs found

    Third- or Later-line Therapy for Metastatic Colorectal Cancer : Reviewing Best Practice

    Get PDF
    An increasing number of patients with metastatic colorectal cancer (mCRC) are able to receive 3 or more lines of therapy. Treatments in this setting can include regorafenib (an oral multikinase inhibitor), trifluridine/tipiracil hydrochloride (TAS-102), antibodies that target epidermal growth factor receptor for patients with RAS wild-type tumors (if no prior exposure), and, where approved, anti-programmed cell death protein 1 inhibitors for patients with microsatellite instability-high mCRC. Although guidelines describe the available treatment options, few insights are provided to guide selection and sequencing. In this article, we share expert opinion from diverse geographic regions, to offer guidance for best practice when selecting and managing third-line treatment for mCRC. Various factors, including performance status, age, and tumor sidedness, can be used to guide treatment selection. Biomarkers, such as RAS, BRAF, and microsatellite instability, can be useful for treatment stratification. Management of adverse events, to maintain quality of life, is a key consideration and is crucial to best practice in this setting. Common toxicities associated with third-line treatments are hand-foot skin reaction, fatigue, diarrhea, and cytopenias. Patients who receive third-line and later-line treatments should be monitored for these events, especially during the first 2 cycles. Dose modifications can also be used to manage toxicities and to minimize the effect on quality of life, while maximizing treatment benefit. Clinical trials of emerging agents, new treatment combinations, and novel therapies continue the efforts to improve outcomes for patients with mCRC. Sharing expert opinions on best practice for treatment selection and management can ultimately improve outcomes for patients with mCRC

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    KRAS G12C Inhibition with Sotorasib in Advanced Solid Tumors

    Get PDF
    Background: No therapies for targeting KRAS mutations in cancer have been approved. The KRAS p.G12C mutation occurs in 13% of non-small-cell lung cancers (NSCLCs) and in 1 to 3% of colorectal cancers and other cancers. Sotorasib is a small molecule that selectively and irreversibly targets KRASG12C. Methods: We conducted a phase 1 trial of sotorasib in patients with advanced solid tumors harboring the KRAS p.G12C mutation. Patients received sotorasib orally once daily. The primary end point was safety. Key secondary end points were pharmacokinetics and objective response, as assessed according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. Results: A total of 129 patients (59 with NSCLC, 42 with colorectal cancer, and 28 with other tumors) were included in dose escalation and expansion cohorts. Patients had received a median of 3 (range, 0 to 11) previous lines of anticancer therapies for metastatic disease. No dose-limiting toxic effects or treatment-related deaths were observed. A total of 73 patients (56.6%) had treatment-related adverse events; 15 patients (11.6%) had grade 3 or 4 events. In the subgroup with NSCLC, 32.2% (19 patients) had a confirmed objective response (complete or partial response) and 88.1% (52 patients) had disease control (objective response or stable disease); the median progression-free survival was 6.3 months (range, 0.0+ to 14.9 [with + indicating that the value includes patient data that were censored at data cutoff]). In the subgroup with colorectal cancer, 7.1% (3 patients) had a confirmed response, and 73.8% (31 patients) had disease control; the median progression-free survival was 4.0 months (range, 0.0+ to 11.1+). Responses were also observed in patients with pancreatic, endometrial, and appendiceal cancers and melanoma. Conclusions: Sotorasib showed encouraging anticancer activity in patients with heavily pretreated advanced solid tumors harboring the KRAS p.G12C mutation. Grade 3 or 4 treatment-related toxic effects occurred in 11.6% of the patients. (Funded by Amgen and others; CodeBreaK100 ClinicalTrials.gov number, NCT03600883.)

    Supplementary Material for: Circulating tumor DNA testing overcomes limitations of comprehensive genomic profiling from tumor tissue

    No full text
    The “liquid biopsy” is an established technique for examining circulating tumor DNA (ctDNA) from a routine blood draw and detecting actionable biomarkers. Nonetheless, ctDNA testing is rarely utilized for patients with newly diagnosed metastatic colorectal cancer (CRC). We report a case in which ctDNA testing uncovered an actionable biomarker that was not detected by comprehensive genomic profiling of tumor tissue. An 81-year-old woman with a remote history of non-Hodgkin’s lymphoma presented with primary masses in the ascending colon and sigmoid colon. The ascending colon and sigmoid colon tumors were classified as microsatellite stable (MSS) and mismatch repair proficient (pMMR), and both ctDNA and tissue next-generation sequencing (NGS) from the ascending colon mass were ordered. Because tissue NGS results indicated that the ascending colon tumor was MSS, palliative 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemotherapy was started. However, the ctDNA NGS results that arrived after the start of FOLFOX found high microsatellite instability (MSI-H) and mismatch repair deficient (dMMR) disease with a serine/threonine-protein kinase B-Raf (BRAFV600E) mutation. To treat both her MSS/pMMR ascending colon and sigmoid colon tumors and MSI-H/dMMR metastatic disease, the immunotherapy nivolumab was added to FOLFOX. After 8 months of combined nivolumab and chemotherapy, the patient’s metastatic disease had a complete clinical response. This case highlights the complementary role of ctDNA testing for biomarker identification. By performing simultaneous ctDNA testing at the time of diagnosis, an actionable biomarker was discovered that significantly altered this patient’s prognosis and treatment options. Orthogonal testing of key molecular alterations offers significant advantages for identifying actionable biomarkers and improving management of metastatic CRC

    ビデオレート2光子顕微鏡

    No full text
    corecore