332 research outputs found

    Programmed schedule holds for improving launch vehicle holds

    Get PDF
    Baseline definition and system optimization are used for the analysis of programmed holds developed through prelaunch system analysis. Identification of design specifications for ground support equipment and maintenance concepts, and design specifications are used to describe the functional utilization of the overall flow process

    Guidance for the evaluation and treatment of hereditary and acquired thrombophilia

    Get PDF
    Thrombophilias are hereditary and/or acquired conditions that predispose patients to thrombosis. Testing for thrombophilia is commonly performed in patients with venous thrombosis and their relatives; however such testing usually does not provide information that impacts management and may result in harm. This manuscript, initiated by the Anticoagulation Forum, provides clinical guidance for thrombophilia testing in five clinical situations: following 1) provoked venous thromboembolism, 2) unprovoked venous thromboembolism; 3) in relatives of patients with thrombosis, 4) in female relatives of patients with thrombosis considering estrogen use; and 5) in female relatives of patients with thrombosis who are considering pregnancy. Additionally, guidance is provided regarding the timing of thrombophilia testing. The role of thrombophilia testing in arterial thrombosis and for evaluation of recurrent pregnancy loss is not addressed. Statements are based on existing guidelines and consensus expert opinion where guidelines are lacking. We recommend that thrombophilia testing not be performed in most situations. When performed, it should be used in a highly selective manner, and only in circumstances where the information obtained will influence a decision important to the patient, and outweigh the potential risks of testing. Testing should not be performed during acute thrombosis or during the initial (3-month) period of anticoagulation

    French responses to the Prague Spring: connections, (mis)perception and appropriation

    Get PDF
    Looking at the vast literature on the events of 1968 in various European countries, it is striking that the histories of '1968' of the Western and Eastern halves of the continent are largely still written separately.1 Nevertheless, despite the very different political and socio-economic contexts, the protest movements on both sides of the Iron Curtain shared a number of characteristics. The 1968 events in Czechoslovakia and Western Europe were, reduced to the basics, investigations into the possibility of marrying social justice with liberty, and thus reflected a tension within European Marxism. This essay provides an analysis specifically of the responses by the French left—the Communist Party, the student movements and the gauchistes—to the Prague Spring, characterised by misunderstandings and strategic appropriation. The Prague Spring was seen by both the reformist and the radical left in France as a moderate movement. This limited interpretation of the Prague Spring as a liberal democratic project continues to inform our memory of it

    Monitoring of drying kinetics evolution and hygrothermal properties of new earth-based materials using climatic chamber simulation

    Get PDF
    This study focuses on the drying kinetics of cob and light-earth layers comprising a hybrid walling system. Volumetric water content sensors are immersed and placed at different positions on the walls of a building to measure the drying kinetics. In addition, an experimental analysis of the effect of temperature, relative humidity (RH), and wind velocity variations on thermal conductivity in a climatic chamber under winter and summer conditions was conducted. The analysis of samples in laboratory aims to investigate the hygrothermal properties of cob and light-earth materials, and their dependency on the aforementioned parameters. The in situ drying kinetics of both materials involves water content reduction and stabilization; however, in the laboratory, although the water content of materials decreases, the drying is incomplete. Which may be due to the limited wind speed. The hydrothermal properties show that open porosity affects water vapor permeability and modifies the RH of cob and light-earth. At 23 °C, when the relative humidity (RH) range was 10–30%, the absorbed water vapor of cob and light earth was 0–2%. However, when the RH is 40–90%, the absorbed water vapor of light earth (2–9%) exceeds that of cob (0.5–2%). Moreover, the response to relative humidity (RH) with regard to the mixing law of components and samples differs. The resistance factor to water vapor diffusion values for cob and light-earth are 12.9 and 8.2, respectively. In this study, the thermal conductivity measurements under summer and winter conditions provide the relationship between the thermal conductivity, density, and water content of cob and light-earth materials

    Earth construction: Field variabilities and laboratory reproducibility

    Get PDF
    Building construction is a major polluting sector. As a result, there is increasing global interest in the development of sustainable building materials with low environmental impact. Earth-based materials are among the materials of interest and building with earth-based materials has thus received a particular renewal of attention. Previous research has focused on the physical characteristics and durability of these materials. The aim of this study is to assess the variability of materials made in-situ and their reproducibility in the laboratory using an automatic normal Proctor machine with different compaction energies. Both cob and light earth were investigated. Cylindrical and prismatic specimens were produced on-site and in the laboratory: cob was made of silt, silty clay, sandy silt, and flax straw; and a separate layer of light earth was made of elastic silt and reed fibres. An experimental program was designed to evaluate the properties of the materials in terms of their water content, density, porosity, compressive strength, and thermal conductivity. The results revealed that the in-situ densities could be reproduced in the laboratory with compaction energies of 0.6 MJ/m3 and 0.2 MJ/m3 for cob and light earth, respectively. These compaction energies will allow the research to produce laboratory specimens that were representative of the materials implemented on-site. Regarding the compressive strength, the values obtained in the laboratory were higher than those of the in-situ specimens. Correction factors of 0.88 and 0.67 for cob and light earth. These values should be applied to calibrate the laboratory results in relation to in-situ. Concerning the thermal conductivity, the values obtained in the laboratory were similar for cob and higher for light earth. A correction factor of 0.87 should be applied to calibrate the laboratory results to those obtained in-situ

    Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily

    Full text link
    In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe \approx 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne \approx 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees
    corecore