27 research outputs found

    Some Aspects of the Acid Cleaning of Steam Generators

    No full text

    Supplementary Material for: Genetic and Lifestyle Causal Beliefs about Obesity and Associated Diseases among Ethnically Diverse Patients: A Structured Interview Study

    No full text
    <b><i>Background:</i></b> New genetic associations with obesity are rapidly being discovered. People's causal beliefs about obesity may influence their obesity-related behaviors. Little is known about genetic compared to lifestyle causal beliefs regarding obesity, and obesity-related diseases, among minority populations. This study examined genetic and lifestyle causal beliefs about obesity and 3 obesity-related diseases among a low-income, ethnically diverse patient sample. <b><i>Methods:</i></b> Structured interviews were conducted with patients attending an inner-city hospital outpatient clinic. Participants (n = 205) were asked how much they agreed that genetics influence the risk of obesity, type 2 diabetes, heart disease, and cancer. Similar questions were asked regarding lifestyle causal beliefs (overeating, eating certain types of food, chemicals in food, not exercising, smoking). In this study, 48% of participants were non-Hispanic Black, 29% Hispanic and 10% non-Hispanic White. <b><i>Results:</i></b> Over two-thirds (69%) of participants believed genetics cause obesity ‘some' or ‘a lot', compared to 82% for type 2 diabetes, 79% for heart disease and 75% for cancer. Participants who held genetic causal beliefs about obesity held more lifestyle causal beliefs in total than those who did not hold genetic causal beliefs about obesity (4.0 vs. 3.7 lifestyle causal beliefs, respectively, possible range 0-5, p = 0.025). There were few associations between causal beliefs and sociodemographic characteristics. <b><i>Conclusions:</i></b> Higher beliefs in genetic causation of obesity and related diseases are not automatically associated with decreased lifestyle beliefs. Future research efforts are needed to determine whether public health messages aimed at reducing obesity and its consequences in racially and ethnically diverse urban communities may benefit from incorporating an acknowledgement of the role of genetics in these conditions

    First Nuclear Reaction Experiment with Stored Radioactive 56Ni Beam and Internal Hydrogen and Helium Targets

    No full text
    The investigation of light-ion induced direct reactions using stored and cooled radioactive beams, interacting with internal targets of storage rings, can lead to substantial advantages over external target experiments, in particular for direct reaction experiments in inverse kinematics at very low momentum transfer, q. This new and challenging experimental technique enables high-resolution measurements down to very low q and provides a gain in luminosity from accumulation and recirculation of the stored beams. For performing first experiments of this kind a dedicated experimental setup housing several DSSD (Double-sided Silicon Strip Detector) and Si(Li) detectors for recoil particles, well suited for meeting the demanding UHV (Ultra High Vacuum) conditions of a storage ring, was recently designed, constructed and installed at the internal target of the ESR storage ring at GSI. From the interaction of a stored 56Ni beam with an internal H2 target, good quality differential cross section data for elastic proton scattering, measured with the aim to determine the radial shape of the nuclear matter distribution of 56Ni, were obtained. Preliminary results are presented. Being the first reaction experiment ever performed with a stored radioactive beam on a world-wide scale, this experiment can be considered as a breakthrough for nuclear structure and astrophysics studies, and, in addition, as a successful proof-of-principle of the new experimental concept. In addition, preliminary results from a feasibility study on inelastic α-scattering from 58Ni in inverse kinematics, where it was demonstrated that the Isoscalar Giant Monopole Resonance in 58Ni can be investigated by the present technique down to CM angles below 1 degree, are discussed. Such an experiment, performed in the future with the doubly magic 56Ni, would provide important information on the EOS of nuclear matter
    corecore