30 research outputs found

    Stable Large-scale CO2 Storage in Defiance of an Energy System Based on Renewable Energy – Modelling the Impact of Varying CO2 Injection Rates on Reservoir Behavior

    Get PDF
    AbstractThe IPCC Report 2014 strengthens the need for CO2 storage as part of climate change mitigation options. The further expansion of electricity generation by solar and wind and its preferential usage in Germany is leading to strong fluctuations in the CO2 output from former base load coal fired power plants. This study takes a look at the feasibility of large scale industrial CO2 injection into a saline aquifer structure with the main focus on varying injection rates. By means of simulation the influence of the most important parameters is analyzed

    Emissions from a modern log wood masonry heater and wood pellet boiler : Composition and biological impact on air-liquid interface exposed human lung cancer cells

    Get PDF
    The consumption of wood fuel is markedly increasing in developing and industrialized countries. Known side effects of wood smoke inhalation manifest in proinflammatory signaling, oxidative stress, DNA damage and hence increased cancer risk. In this study, the composition and acute biological impact of emissions of state-of-the-art wood combustion compliances: masonry heater (MH) and pellet boiler (PB) were investigated. Therefore A549 cells were exposed to emission aerosols in an automated air-liquid interface exposure station followed by cytotoxicity, transcriptome and proteome analyses. In parallel, aerosols were subjected to a chemical and physical haracterization. Compared to PB, the MH combustion at the same dilution ratio resulted in a 3-fold higher particle mass concentration (PM2.5) and deposited dose (PB: 27 ±\pm 2 ng/cm2, MH; 73 ±\pm 12 ng/cm2). Additionally, the MH aerosol displayed a substantially larger concentration of aldehydes, polycyclic aromatic hydrocarbons (PAH) or oxidized PAH. Gene ontology analysis of transcriptome of A549 cells exposed to MH emissions revealed the activation of proinflammatory response and key signaling cascades MAP kinase and JAK-STAT. Furthermore, CYP1A1, an essential enzyme in PAH metabolism, was induced. PB combustion aerosol activated the proinflammatory marker IL6 and different transport processes. The proteomics data uncovered induction of DNA damage-associated proteins in response to PB and DNA doublestrand break processing proteins in response to MH emissions. Taking together, the MH produces emissions with a higher particle dose and more toxic compounds while causing only mild biological responses. This finding points to a significant mitigating effect of antioxidative compounds in MH wood smoke

    Bestimmung von Ozonabbauraten über der Arktis und Antarktis mittels Ozonsonden- und Satellitendaten

    Get PDF
    Diese Arbeit beschäftigt sich mit der chemischen Ozonzerstörung im arktischen und antarktischen stratosphärischen Polarwirbel. Diese wird durch Abbauprodukte von anthropogen emittierten Fluorchlorkohlenwasserstoffen und Halonen, Chlor- und Bromradikale, verursacht. Studien in denen der gemessene und modellierte Ozonabbau verglichen wird zeigen, dass die Prozeße bekannt sind, der quantitative Verlauf allerdings nicht vollständig verstanden ist...thesi

    Define Phase and Strategy

    No full text

    On-Line Process Analysis of Biomass Flash Pyrolysis Gases Enabled by Soft Photoionization Mass Spectrometry

    No full text
    In the current discussion about future energy and fuel supply based on regenerative energy sources, the so-called second-generation biofuels represent a vitally important contribution for the provision of carbon-based fuels. In this framework, at the Karlsruhe Institute of Technology (KIT), the bioliq process has been developed, by which biomass is flash-pyrolyzed at 500 °C for the production of so-called biosyncrude, a suspension of the pyrolysis liquids and the remaining biochar. However, little is known about the composition of the pyrolysis gases in this process with regard to different biomass feedstock and process conditions, and the influence on the subsequent steps, namely, the gasification and subsequent production of biofuels or base materials. Time-of-flight mass spectrometry (TOFMS) with two soft (i.e., fragmentation free) photoionization techniques was for the first time applied for on-line monitoring of the signature organic compounds in highly complex pyrolysis gases at a technical pyrolysis pilot plant at the KIT. Resonance-enhanced multiphoton ionization with TOFMS using UV laser pulses was used for selective and sensitive detection of aromatic species. Furthermore, single-photon ionization using VUV light supplied by an electron beam-pumped excimer light source was used to comprehensively ionize (nearly) all organic molecules. For the miscellaneous biomass feeds used, distinguishable mass spectra with specific patterns could be obtained, mainly exhibiting typical pyrolytic decomposition products of (hemi)­cellulose and lignin (phenol derivatives), and nitrogen-containing compounds in some cases. Certain biomasses are differentiated by their ratios of specific groups of phenolic decomposition products. Therefore, principal component and cluster analysis describes the varied pyrolysis gas composition for temperature variations and particularly for different biomass species. The results can be integrated in the optimization of the bioliq process

    Single Photon Ionization Orthogonal Acceleration Time-of-Flight Mass Spectrometry and Resonance Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry for Evolved Gas Analysis in Thermogravimetry: Comparative Analysis of Crude Oils

    No full text
    Coupling thermal analysis (TA) with a subsequent analytical method in order to investigate evolved gaseous products from the thermal analysis is a well established method. A popular practice to analyze the gaseous products evolving from thermal analysis is mass spectrometry using electron impact ionization (EI).(1-4) As the kinetic energy of the electrons thereby is typically far beyond the ionization energies of the assayed samples, the electron impact effects fragmentation particularly of organic compounds, hampering the correlation of the ion signals to the gaseous compounds. This applies for complex mixtures in particular. Fragmentation can be reduced using so-called soft ionization techniques. In the course of the presented setup, single photon ionization (SPI) using electron beam pumped excimer lamps (EBEL) emitting vacuum ultraviolet (VUV) light (lambda = 126 nm) is employed. For the instrumentation, a TA system has been coupled to an EBEL-SPI-oaTOFMS (oaTOFMS: orthogonal acceleration time-of-flight mass spectrometry) system using a heated transfer capillary in order to detect semivolatile organic substances from the gas flow of a thermobalance with high temporal resolution. Presented measurements focus on crude oils of different origins. In-depth analysis demonstrates that it is possible to tell apart different crude oil samples on the basis of temperature resolved mass spectra gained from the described setup. TA allows for the assay of crude oils without sample preparation via a distillation process which precedes the thermal decomposition of nonvolatile oil components, i.e., resins and asphaltenes. The gases that evolve during thermal analysis are a complex mixture of organic compounds. These can be analyzed without losing molecular information using mass spectrometry with a soft ionization technique, such as SPI
    corecore