8,726 research outputs found

    Simulation investigation of the effect of the NASA Ames 80-by 120-foot wind tunnel exhaust flow on light aircraft operating in the Moffett field trafffic pattern

    Get PDF
    A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure

    The Effect of Human Error on Modern Security Breaches

    Get PDF

    Action languages: Dimensions, effects

    Get PDF
    Dimensions of action languages are discussed for communication between humans and machines, and the message handling capabilities of object oriented programming systems are examined. Design of action languages is seen to be very contextual. Economical and effective design will depend on features of situations, the tasks intended to be accomplished, and the nature of the devices themselves. Current object oriented systems turn out to have fairly simple and straightforward message handling facilities, which in themselves do little to buffer action or even in some cases to handle competing messages. Even so, it is possible to program a certain amount of discretion about how they react to messages. Such thoughtfulness and perhaps relative autonomy of program modules seems prerequisite to future systems to handle complex interactions in changing situations

    Adaptive Bound Optimization for Online Convex Optimization

    Full text link
    We introduce a new online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions observed so far. This is in contrast to previous algorithms that use a fixed regularization function such as L2-squared, and modify it only via a single time-dependent parameter. Our algorithm's regret bounds are worst-case optimal, and for certain realistic classes of loss functions they are much better than existing bounds. These bounds are problem-dependent, which means they can exploit the structure of the actual problem instance. Critically, however, our algorithm does not need to know this structure in advance. Rather, we prove competitive guarantees that show the algorithm provides a bound within a constant factor of the best possible bound (of a certain functional form) in hindsight.Comment: Updates to match final COLT versio

    Colour image processing and texture analysis on images of porterhouse steak meat

    Get PDF
    This paper outlines two colour image processing and texture analysis techniques applied to meat images and assessment of error due to the use of JPEG compression at image capture. JPEG error analysis was performed by capturing TIFF and JPEG images, then calculating the RMS difference and applying a calibration between block boundary features and subjective visual JPEG scores. Both scores indicated high JPEG quality. Correction of JPEG blocking error was trialled and found to produce minimal improvement in the RMS difference. The texture analysis methods used were singular value decomposition over pixel blocks and complex cell analysis. The block singular values were classified as meat or non- meat by Fisher linear discriminant analysis with the colour image processing result used as ‘truth.’ Using receiver operator characteristic (ROC) analysis, an area under the ROC curve of 0.996 was obtained, demonstrating good correspondence between the colour image processing and the singular values. The complex cell analysis indicated a ‘texture angle’ expected from human inspection

    Methods for linear radial motion estimation in time-of-flight range imaging

    Get PDF
    Motion artefacts in time-of-flight range imaging are treated as a feature to measure. Methods for measuring linear radial velocity from range imaging cameras are developed and tested. With the measurement of velocity, the range to the position of the target object at the start of the data acquisition period is computed, effectively correcting the motion error. A new phase based pseudo-quadrature method designed for low speed measurement measures radial velocity up to ±1.8 m/s with RMSE 0.045 m/s and standard deviation of 0.09-0.33 m/s, and new high-speed Doppler extraction method measures radial velocity up to ±40 m/s with standard deviation better than 1 m/s and RMSE of 3.5 m/s
    corecore