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Abstract
This paper outlines two colour image processing and texture analysis techniques applied to meat images
and assessment of error due to the use of JPEG compression at image capture. JPEG error analysis was
performed by capturing TIFF and JPEG images, then calculating the RMS difference and applying a
calibration between block boundary features and subjective visual JPEG scores. Both scores indicated
high JPEG quality. Correction of JPEG blocking error was trialled and found to produce minimal
improvement in the RMS difference. The texture analysis methods used were singular value decomposition
over pixel blocks and complex cell analysis. The block singular values were classified as meat or non-
meat by Fisher linear discriminant analysis with the colour image processing result used as ‘truth.’ Using
receiver operator characteristic (ROC) analysis, an area under the ROC curve of 0.996 was obtained,
demonstrating good correspondence between the colour image processing and the singular values. The
complex cell analysis indicated a ‘texture angle’ expected from human inspection.
Keywords : Meat Imaging, Colour Image Processing, Singular Value Texture Analysis, Complex Cell
Analysis.

1 Background

In this paper we investigate the relationship of tex-
ture analysis segmentation to colour segmentation
on meat images and investigate image features to
characterise visual texture in an image.

The appearance of meat, such as colour and vi-
sual texture are important to the consumer when
purchasing meat. The perceived colour of meat
is a function of its chemical makeup and viewing
conditions, varying with age and ambient lighting.
Visual texture aspects include the alignment of
muscle fibres with respect to the axis of view and
“marbling” or the distribution of small fat regions
in the muscle proper; the latter feature being par-
ticularly important in certain markets. Segmenta-
tion of meat and fat from the background, meat
from the outer fat and meat from marbling by
colour are conceptually easy tasks provided certain
constraints, such as controlled lighting and posi-
tioning are achieved. Texture analysis on meat on
the other hand is somewhat more subtle.

The Meat Quality project at AgResearch is a
FRST funded initiative with the ongoing goal
of finding better ways to objectively assess
meat for features salient to the consumer such
as colour, texture (to the bite), firmness and
moisture. Visible/near infrared spectroscopy
(VIS/NIR) is being employed as a possible

commercial tool for nondestructively measuring
the chemical and physical properties of meat.
VIS/NIR spectroscopy has traditionally only
scanned a single point or small region at a
time. Spectroscopic imaging (usually referred
to as hyperspectral imaging in the literature)
provides spectral information at a number
of localisations, yielding considerable extra
information. Hyperspectral imaging systems
are being developed, but as yet commercially
available systems either have limited spectroscopic
bandwidth or considerably limited spectral
resolution (these cases are usually referred to
as multispectral imaging). Regardless, given a
suitable hyperspectral imaging device, there is
considerable room for research into the fusion of
traditional NIR spectroscopic data analysis and
image processing techniques. Meanwhile it suffices
to investigate processing on pseudo-hyperspectral
images to consider the necessary data processing
methods.

As part of the Meat Quality research, AgResearch
is looking at localised properties throughout the
volume of Longissimus Dorsi (LD) muscles (porter-
house or ribeye) by NIR, a non-invasive technique.
This “3-D mapping” is hoped to reveal new infor-
mation about spatial variability in the character-
istics of the muscles. Image processing is being
investigated to establish localised ‘truth’ of meat
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content (fat-muscle ratios, etc) for the NIR spectral
analysis. This paper describes some image process-
ing investigated.

This paper is structured as follows. Section 2 out-
lines the methodology used, including image acqui-
sition, steps taken to assess JPEG quality, colour
image processing and texture analysis. Section 3
gives results and discussion and Section 4 conclu-
sions and future directions.

2 Methodology

2.1 Setup and Image Acquisition

A Longissimus Dorsi (porterhouse or ribeye) mus-
cle was cut from a beef carcass following a very
careful handling regime, rolled in plastic wrap and
stored at 150C post rigor for three days. The
wrapped meat was then placed in a tube holder
to ensure the surface was perpendicular to the in-
tended view angle and to allow clean cutting as
needed. A large blue board was placed behind
the meat from the intended view of the camera to
assist in image segmentation. Slices were spaced
at 14mm separation along the axis of the muscle
and were taken immediately prior to image acquisi-
tion to minimise colour effects due to the chemical
interaction of oxygen.

Camera setup:

• A Sony DSC707 commercial digital camera
was used.

• The camera was set up with the camera lens
aligned 0.9 m from the meat face. The camera
zoom was set to maximal optical zoom and
the focus set at 0.9 m.

• The depth of focus was set to the minimum
possible so that non-target background
objects were blurred.

• Camera resolution was set to the maximum
resolution 2560× 1920 pixels.

Image Acquisition:

• Three images of each meat slice with one grey
18% reflectance and one white 90% reflectance
image were taken (Jessops photographic grey
card) as reference grey for each meat slice.

• Six slices were studied giving a total of 30
images.

• For the assessment of the quality of JPEGs
produce by the camera, JPEG and TIFF
copies of each image were generated by the
camera. The TIFF to JPEG compression
ratio was 6.5:1.

2.2 JPEG Quality Assessment

The JPEG file format was chosen because of the
time taken to save an individual lossless TIFF file
on the camera (approximately 45 seconds for each
14 Mbyte TIFF file) and due to the need to aquire
data quickly over the slices of a muscle to ensure
minimal time influence on the chemical composi-
tion of the muscle. To assess the error due to JPEG
compression, the RMS difference for the individual
colour planes was taken over the image set. Visual
inspection of the JPEGs showed that significant
blocking only occurred in the blurred blue back-
ground region of the images. No ringing artefacts
were observed.

The JPEG deblocking algorithm due to Pham
and van Vliet [1] was trialled. This algorithm uses
anisotropic diffusive filtering by convolution with a
variable linear Gaussian element to smooth along
JPEG blocks while attempting to preserve image
edges. The result combined with an isotropic
global Gaussian filtered image by a weighted
addition soft mixing method. Automatic JPEG
quality assessment [2] was used as suggested
in [1] to set the strength of filtering. The quality
assessment scores JPEGs between 0 (worst visual
quality) and 10 (best visual quality) with the worse
the quality the greater the standard deviation of
the Gaussian elements.

2.3 Colour Image Processing

Figure 1 shows an outline of the colour image pro-
cessing algorithm used to segment the meat images
into the constituent parts of the meat region, large
fat regions and the blue background. A simplified
L*a*b space was used [3]





c1

c2

c3



 =





1 1 1
1 −2 1
−1 0 1









R
G
B



 (1)

where c1 is ‘brightness’, c2 provides a red-enhanced
image useful for detecting the meat region and c3

a blue-enhanced image.

The blue region was detected by thresholding c3

at the threshold value 0 and the threshold result
binary image was morphologically opened using a
circular structuring element of radius 3. The meat
region was detected in c2 by first morphologically
closing with a square structuring element of width
5 pixels to reduce small dark regions in the meat
area. Then the Haar wavelet transform was applied
until a minimum of eight rows was reached. In
the minimum scale image the maximum intensity
pixel point was found and tracked back up through
the subsequent resolutions in the approximation
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Figure 1: Block Diagram of Colour Processing

coefficients to the original resolution. The closed
c2 image was then thresholded at the mean plus
the standard deviation of all pixel values in the
image. Holes in the resultant binary image were
flood-filled. The object determined by the corse to
fine resolution tracking was selected as the meat
object.

The fat region was found by taking the red plane,
masking out the meat and blue regions and then
thresholding with a stringent (to avoid confusion
with other bright objects) threshold value slightly
less that the maximum pixel intensity value. The
resultant binary image was morphologically closed
using a circular element and then only objects
greater than 1000 pixels in area that neighbour the
meat region by 5 pixels were kept as fat objects.

2.4 SVD Texture Analysis and Classifica-
tion

The meat region of the images exhibit a visually
rough and reasonably regular textural pattern.
Singular valued decomposition was investigated as
a likely method for detecting the meat region.

Singular value decomposition (SVD) of matrices
can be a useful discriminating factor between tex-
tures [4]. The singular value decomposition of a
matrix X is

X = USV T

where U and V are orthogonal matrices and S
is a diagonal matrix with the singular values sii

on the diagonal. The singular values are ranked
si,i > si+1,i+1 and decay with respect to i at a
rate proportional to the degree of variation in a
matrix.

Singular values were computed over blocks of size
32 × 32. The block size was chosen as a multiple
of eight to minimise any effects due to JPEG block
boundaries. A block size of greater than eight pix-
els square was required to encompass enough tex-
tural information to be useful for texture discrimi-
nation, yet small enough for sufficient localisation.
Blocks were begun in the top lefthand corner and
left over rows and columns were discarded as the
meat region is centred in the images, resulting in
40 × 60 × 32 SVD images. When applied to a
colour image and the singular values catenated we
obtained 40× 60× 96 SVD images for comparison
with the colour image processing.

Pattern classification was applied to the singular
values using Fisher linear discriminant analysis
(LDA) [5]. Fisher LDA attempts to find the
optimal solution to the linear classification
problem

yi =
∑

j

xi,jbj (2)

where yi = {0, 1}, ∀i is the set of class assignments
corresponding to each block i, xi,j is the data array
with singular values j and bj are the classification
coefficients. The coefficients bj form a discrimi-
nating hyperplane in dataspace to be optimised
by maximising the signal to noise ratio (written
in matrix form)

SNR(b) =
b

T Sbb

b
T Swb

(3)

with the between class scatter matrix

Sb = (µ1 − µ2)
T (µ1 − µ2)

and the within class scatter matrix

Sw =
∑

c

(Xc − µc)
T (Xc − µc)

where c = {0, 1} is the designation of the two
pattern classes with data Xc and mean µc over
instances in class c. Equation 3 is maximised when

b = S−1
w (µ1 − µ0) (4)

The SVD instances were each assigned a classifi-
cation as meat (yi = 1) or non-meat (yi = 0)
designating a block a meat block if at least half
of all pixels in the meat segmented image from the
colour segmentation above were set to one.



Receiver operator characteristic (ROC) analysis [6]
was employed to examine the efficacy of texture
classification. A ROC graph is a plot of, for a
number of classification thresholds, the true posi-
tive fraction (TPF) or ratio of the number of true
positives to number of actual positives against the
false positives fraction (FPF) or ratio of false posi-
tive to actual negatives. Assuming the data follows
the bi-normal parametric model the area under the
ROC curve (AUC) is related to the signal to noise
ratio of classification by

SNR = 2erf−1(2AUC − 1) (5)

where erf−1(·) is the inverse error function. When
AUC = 0.5, SNR = 0 which corresponds to noise
and AUC = 1 implies TPF = 1 when FPF = 0,
corresponding to perfect classification or SNR =
∞.

2.5 Complex Cell Operator for Image Tex-
ture Orientation Assessment

Figure 2: Segment of meat image

Texture in the meat images is visibly orientated
with a clear dominant angle. Figure 2 shows an
example segment of a meat image with diagonally
directed texture from top left to bottom right. This
angle of texture varies down the length of a muscle
due to the change in direction of muscle fibres, in-
fluencing various subjective features of meat qual-
ity such as ‘bite texture.’ NIR spectra taken down
the length of muscle fibrils are not likely to be
quite the same as spectra taken across fibrils due
to changes in light scattering.

To characterise texture orientation and strength of
orientation a complex cell model is used [7]. The

complex cell model is a neurologically inspired bar
and edge detector intended to respond primarily,
but not exclusively, to pixel intensity change in a
given direction. To compute the complex cell re-
sponse, first the Gabor wavelet response was taken
where the gabor filter is:

gξ,η,λ,θ,φ(x, y) = exp

(

−
x2 + γy2

2σ2

)

cos
(

2π
x

λ
+ φ

)

x =(x0 − ξ) cos θ − (y0 − η) sin θ

y =(x0 − ξ) sin θ + (y0 − η) cos θ

(6)

with γ = 0.5. The response of image I to g was

rλ,θ,φ(ξ, η) =

∫∫

Ω

I(x, y)gξ,η,λ,θ,φ(x, y) dxdy (7)

where Ω was the image domain. An approximation
image aξ,η,λ was also computed as

aλ(ξ, η) =

∫∫

Ω

I(x, y)e−
(x−ξ)2+γ(y−η)2

2σ2 dxdy (8)

From r and a the simple cell was computed as

sξ,η,λ,θ,φ(x, y) =

{

0 if a = 0

H(Rr
a

/( r
a

+ C)) otherwise

(9)
where H(·) is the Heavyside function, R and C
are free parameters that control the maximum re-
sponse and the semi-saturation constant respec-
tively. R and C were set to 1 for this study. Finally
the complex cell response was found from the sim-
ple cell response as

cξ′,η′,λ,θ =

∫∫

Ω

e
−

(x−ξ′)2+γ(y−η′)2

2(2σ)2

√

∑

φ

s2
ξ,η,λ,θ,φ dξdη

(10)
which is a diffused root-sum-squares of the simple
cell responses with preferred orientation and spa-
tial frequency.

With the complex cell response in hand, we may
now attempt to find an indication of the strength
of each preferred angle response over the meat re-
gion. This angular response strength measure was
hoped to serve as an indication of muscle fibril
orientation when considering NIR analysis. We
mask out all non-meat regions of the image and
average the complex cell responses over 32 × 32
blocks to match the SVD texture analysis. Then
for each spatial frequency at each block the angle
for which the block has the greatest response was
found, indicating the dominant textural direction
for each block. For each angle the number of dom-
inant blocks under the meat region was plotted
as an average complex cell response verses angle
graph. Visually the green plane showed the great-
est intensity variation in the meat region and thus
was chosen for complex cell response computation.



Figure 3: (left) A meat image and (right) the colour segmented image
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Figure 4: ROC curve for classifying blocks as meat by singular values using Fisher LDA. AUC = 0.996

3 Results and Discussion

The mean RMS JPEG error over the thirty images
(with intensity range (0, 255)) was 1.83 (standard
deviation 0.42), after deblocking the mean error
was 1.71 (standard deviation 0.80). Thus the orig-
inal RMS error was only 0.72 of pixel intensity.
However a paired t-test at the 95% confidence limit
rejected the hypothesis that the mean RMS im-
provement was statistically insignificant (however
small). Concordant with the low RMS intensity er-
ror is visual assessment of the JPEGs shows ringing
artefacts appear visually non-existent and that the
JPEG visual quality assessment algorithm [2] gave
a ten out of ten score for all images.

Figure 3 shows a meat image and the result of
the colour segmentation into meat, fat and blue
background regions. Unclassified regions in the

meat face are mostly connective tissue or small
‘disjoint’ meat regions. This particular slice is an
example result of incorrect slicing technique which
(according to an AgResearch expert butcher) is due
to “pressing down on the meat like a loaf of bread
while cutting.”

Figure 4 shows the ROC curve for classifying image
blocks as meat by SVD texture analysis using the
colour image processing result as ‘truth.’ The AUC
is 0.996 which corresponds to a signal to noise ratio
of 3.75 indicating good correspondence between
the two processing methods and also indicating
that the smoothing and blocking by the JPEG
compression is not strong enough to interfere with
the meat texture.

Figure 5 shows two average complex cell response
verses angle curves for different meat slices. Both
graphs have a line for the finest resolution exam-
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Figure 5: Complex cell responses for several
wavenumbers as indicated by the legend over two
meat slices. (Top) The response for a well cut
slice with a clear peak below 0.4π and (below) the
response from a poorly cut slice.

ined (λ/2π = 2pixels) strongly peaking at θ =
0.5π, which occurred for all slices. This is believed
to be an anomalous result caused by the wavelet
wavelength being too small in relation to pixel res-
olution. For the top graph of figure 5 the peak is
just below θ = 0.4π from vertical, matching well
the texture seen in visual inspection of the images.
The bottom graph shows the peak shifted closer to
horizontal which is a result of the incorrect slicing
technique producing a subtle horizontal textural
effect.

4 Conclusions and Future Directions

A strong relationship between colour segmentation
and texture segmentation using singular values has
been demonstrated in a set of meat images. Con-
cordantly JPEG error in our images is shown to be
of no consequence as it does not appear a confound-
ing factor in the singular value texture analysis.
Complex cell analysis was applied to investigate
the determination of textural direction by com-

puter vision which showed good correspondence
with human visual inspection, but also highlighted
how incorrect slicing of meat causes confounding
texture.

Future work may involve correlation of texture
analysis to NIR spectra, more consideration into
appropriate texture analysis methods and ‘image’
processing of hyperspectral images obtained by
manually sequentially scanning locations on the
meat face with NIR. The primary goal is to
establish, by image analysis, the localised meat
content for NIR investigations. The ultimate goal
is to obtain hyperspectral VIS/NIR images of
sufficient spatial resolution (just what resolution
is sufficient is an open question) and to consider
the hybridisation of spectral analysis and image
processing techniques.
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