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ABSTRACT

Motion artefacts in time-of-flight range imaging are treated as a feature to measure. Methods for measuring
linear radial velocity from range imaging cameras are developed and tested. With the measurement of velocity,
the range to the position of the target object at the start of the data acquisition period is computed, effectively
correcting the motion error. A new phase based pseudo-quadrature method designed for low speed measurement
measures radial velocity up to ±1.8 m/s with RMSE 0.045 m/s and standard deviation of 0.09—0.33 m/s, and
new high-speed Doppler extraction method measures radial velocity up to ±40 m/s with standard deviation
better than 1 m/s and RMSE of 3.5 m/s.
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1. INTRODUCTION

Time-of-flight (ToF) range imaging is an optical lidar method for full field measurement of distance.1 A ToF
camera is an active imaging system that uses amplitude modulated continuous wave (AMCW) illumination in
homodyne with a sensor demodulation signal. The camera encodes distance by the ToF of light as the phase offset
between light return and sensor waveforms, which directly influences the integrated intensity of light in a single
camera frame. However, in addition to the ToF of the light, the amplitude of the light return, and background
light, both also affect the integrated intensity, so there are three unknowns, and at least three frames must be
captured before we can compute the distance. The frames are taken in sequence by a single camera where it is
assumed that the scene is static during the capture process, and herein lies the problem of motion in ToF range
imaging, that motion violates this static scene assumption and causes error in the distance measurements. But,
motion can also be treated as another variable in ToF imaging, especially radial motion which manifests as a
Doppler shift.2,3 This work is concerned with the measurement of linear radial motion (linear velocity towards
or away from the camera aperture), and mitigation of error due to radial motion in measurements of distance.

Radial motion estimation in ToF cameras by modified camera operation methods leverage special features of
heterodyne modulation3 and continuous wave modulation.2 These successful methods, however, do not operate
the ToF cameras in standard off-the-shelf modes. In earlier work, modelling led to a modified range reconstruction
method that reduced the impact of radial motion.4

Radial motion is just one form that affects ToF imaging. The other is transverse motion that is orthogonal to
the radial axis (in spherical coordinates). Two major approaches dominate the literature for transverse motion.
The first major approach is estimation of transverse motion and subsequent correction.4–6 The second major
approach follows two steps: the first step the examination the raw data from the ToF camera for inconsistencies;
and the second step is computation of the distance based on the remaining consistent data.7,8 Concordant with
the second major approach, hardware control of integration times also reduces the impact of motion.9 Shortening
the integration time (or using fewer raw frames) reduces the information comprising the distance measurement,
increasing the overall noise. Hence, we take the motion measurement route, where large motion effects are
encouraged.
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In this work we derive and test two new methods for estimating linear radial velocity. The first method is
based a pseudo-quadrature modulation method that exposes radial motion as an extra phase shift, under the
assumption that the speed is small. The second method invokes principles of times series analysis of noisy data,
and transforms the radial motion problem into a correlation problem, suitable for regression analysis. In Section 2
we review ToF camera operational theory, extend that theory to include radial linear motion, and derive new
methods to measure radial motion. In Section 3 we describe the experiments to text the new methods, and in
Section 4 present the results and discuss the findings.

2. THEORY

We begin by outlining the theory behind standard AMCW ToF homodyne range imaging method1 and the effect
that linear radial motion has. Based on this theory, we then derive the new methods of computing radial velocity
measurement from the data available from a ToF camera.

The active illumination of a ToF range imaging system is continuously amplitude modulated according to the
modulation signal. The illumination source is typically a light emitting diode or diode laser, which respectively
can typically be modulated in the 10s MHz and 100s MHz. The light emitted by the source is backscattered by
the scene and returns to the camera sensor. Let f be the modulation frequency of the camera, d the camera to
scene distance, and c the speed of light in air, then light return is phase shifted by φ, viz.

φ =
4πdf

c
, (1)

where the factor of four contains a factor of two due to the light travelling the distance, d, twice. The light
return, r (t;φ), and sensor, s (t; θ), modulations are idealised as a sine waves, which are modelled as

r (t;φ) = A sin (2πt+ φ) +B, s (t; θ) =
1

2
sin (2πt− θ) +

1

2
. (2)

where A is the return amplitude, B is the background light level, and θ is an electronic phase offset between the
light source and sensor. The light return and demodulation signals mix at the sensor, which integrates over time
T viz.

I (θ;φ) =

∫ T

t=0

r (t, φ) s (t; θ) dt = α cos (φ+ θ) + β, (3)

where α and β are constants that depend on A, B, and T . The camera effectively takes the correlation between
r (t;φ) and s (t; θ), hence, Eqn. (3) is called the correlation wavefunction. ToF cameras are designed so that θ is
adjustable to discrete values, θ = θn, n = 1 . . . N , between integrations, and in doing such adjustment we sample
In = I (θn;φ). We refer to the In as raw frames.

Linear radial motion, or linear motion along the radial axis (in terms of spherical coordinates) causes a
Doppler shift, or stretching, of the correlation wavefunction. This shift is most practically modelled by the
inclusion of the velocity parameter k, where 0 < k, viz.

In = α cos (φ+ kθn) + β. (4)

Estimating k from the In, therefore, gives a measurement of the radial linear motion. But, bandwidth limitations
of data transmission and the desire to measure distance at full frame rates means that the θn used are small
in number, therefore estimating k is more challenging than in other contexts such as Doppler RADAR10 or
Ultrasound.11 In the remainder of this section we present two new methods for estimating k from the In, and
extend the estimation of φ to account for radial motion.

2.1 Pseudo-Quadrature Signal Analysis Velocity Estimation

The first insight that leads to estimation of k is, using Euler’s famous equation,12 that we may rewrite In as

In =
1

2

(
Pτn + Pτ−n

)
+ β, (5)



where i is the imaginary unit, P = eiφ, τ = e−ik∆θ, we choose the phase shift size ∆θ, hence phase steps
θn = n∆θ, and P denotes the complex conjugate of P . Taking a second raw frame with a π/2 radian shift from
In we have

I ′n = α cos (φ+ k (θn + π)) + β = α sin (φ+ kθn + (k − 1)π) + β

=
−i
2

(
Pτnei(k−1)π/2 − Pτ−ne−i(k−1)π/2

)
+ β. (6)

Making the assumption that |k − 1| is small then after the acquisition of the raw frames

mn = In + iI ′n ≈ Pτn + (1 + i)β. (7)

With three mn, n = 0, 1, 2, in hand, it follows that

m2 −m1

m1 −m0
=
Pτ2 − Pτ1

Pτ1 − Pτ0
= τ

P (τ − 1)

P (τ − 1)
= τ. (8)

It is straightforward to recover the velocity parameter k from τ with the use of the usual trigonometric operation

k =
1

∆θ
tan−1

(
I (τ)

R (τ)

)
, (9)

Where I (τ) and R (t) are, respectively, the imaginary and real parts of τ . With τ in hand, we compute P as

m2 −m1

τ2 − τ1
= P

τ2 − τ1

τ2 − τ1
= P, (10)

Like above, it is straightforward to recover φ from P .

This is a quadrature analysis method, but there is a small time delay in the acquisition of each In and the
corresponding I ′n. Therefore this is a pseudo-quadrature signal analysis (PQSA) technique of velocity estimation.
The small speed approximation made in the above analysis limits the applicability of PQSA to low velocities,
such as those found in indoor environments. For faster motion we need a method that extracts k from the In
with no low speed assumptions, which is the topic of the next section.

2.2 Correlation Analysis Velocity Estimation

The second insight leading to measurement of k from the In is that calculus operations bring coefficients out
of trigonometric functions. Specifically, applying indefinite integration and differentiation of In with respect to
θ exposes the rate of change, which is the parameter we wish to measure. Moreover, invoking the principles
of stochastic calculus,13 we have assurances that we can view the In as a noisy time series and perform the
necessary calculus operations. Stochastic calculus, as the name suggests, takes a statistical view of time series
data, leaverageable for parameter estimation.

We begin by extending the correlation wavefunction model to include random noise

In = α cos (φ+ kθn) + β + σεn, (11)

where the εn are samples from a Gaussian distribution of mean zero and variance 1, and σ is some positive
constant that describes the standard deviation of the noise in In. From discrete stochastic calculus we can
approximate the integral and derivative of In with a discrete cumulative sum and discrete difference

Jn =

n∑
m=0

Im ≈
α

∆θk
sin (φ+ kθn) + β (n+ 1)− α

∆θk
sin (φ) +

n∑
m=0

εm,

Dn = In+1 − In ≈ −∆θkα sin (φ+ kθn) + εn+1 − εn.
(12)
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(a) Pearson’s correlation, k = 0.5.
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(b) Pearson’s correlation, k = 1.0.
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(c) Pearson’s correlation, k = 1.5.

Figure 1: Simulation examples of Pearson’s correlation coefficient between Ω
(
n; k̂

)
and θn.

Both Jn and Dn have sine terms, but Jn has the second term that is linear with n. Therefore, we form the
objective function

Ω
(
n; k̂

)
= Jn + k̂Dn = − α

∆θk
sin (φ) + (1 + n)β +

(
1

∆θk
− k̂∆θk

)
α sin (φ+ kθn) + εn+1 − εn +

n∑
m=0

εm.

(13)

When k̂ = 1/ (∆θk)
2
, the coefficient of sine in the third term of the right hand side of Eqn. (13) vanishes and

Ω
(
n; k̂

)
becomes a function of points on a straight line. The same value of k̂ will also maximise Pearson’s

correlation coefficient14 between Ω
(
n; k̂

)
and n. In Fig. 1 we give examples of the correlation coefficient as a

function of k̂. The peak of the curve follows the true value of k. Therefore, finding the peak of the correlation
coefficient is a practical estimator of k̂, albeit an inefficient one. We call this method correlation analysis velocity
estimation (CAVE).

Reexamining Jn and Dn we see that, for the optimal value of k̂, we may write

Jn + k̂Dn = c1n+ c0, (14)

where c1 and c0 are, respectively, coefficients that also account for the linear and constant parts of Ω
(
n; k̂

)
.

Therefore, an efficient means of finding the optimal value of k̂ is to use linear regression to indirectly perform
correlation analysis by solving the following linear systemJ1

...
JN

 =

−D1 1 1
...

...
...

−DN N 1


 k̂c1
c0

 . (15)

The number of columns of the matrix in Eqn. (15) is fixed to three, therefore solving Eqn. (15) by QR decompo-
sition has efficiency O (N). However, it should be noted that there is a fixed number of 33 operations included
in the matrix inversion.

Simulations of CAVE by linear regression are shown in Fig. 2 with N = 9. Both idealised pure cosine
correlation waveform and the correlation waveform with the third and fifth order harmonics of square wave
modulation are simulated. The harmonic error in k̂ increases with velocity towards the camera, ostensibly
occurring as the portion of the correlation waveform that is sampled reduces. The exact mechanism for the
increase of error is not precisely understood, and left for future work.

2.3 Estimation of Phase

The estimation of phase is inherent to PQSA. For simple DoP the phase is estimated before the radial velocity is
computed. For CAVE we need to return to the correlation waveform. Expanding the cosine in Eqn. (4) gives.15

In = A cos (φ) cos (kθn)−A sin (φ) sin (kθn) + β. (16)
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(a) Simulation of CAVE with pure
cosine correlation wavefunctions.
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(b) Simulation of CAVE with the
first, third, and fifth harmonics.

Figure 2: Simulation of CAVE. Motion towards (away from) the camera corresponds to k < 1 (k > 1).

Eqn. (16) can be factorised to form the matrix product

In =
[
cos (kθn) − sin (kθn) 1

] R (P )
I (P )
β

 , (17)

where R (P ) and I (P ) are respectively the real and imaginary parts of P . Once k is measured, it is straightfor-
ward to write the N equations for the In as a linear system and find P and β, where P = R (P ) + iI (P ).

3. MATERIALS AND METHODS

We test the two radial motion measurement methods given. We also compare to motion measurement by simply
taking the difference of phase (DoP) between consecutive range images.

The data are captured with a proprietary prototype camera on which we can control the phase steps and
modulation frequency. The modulation frequency of the camera is set to 70 MHz, giving an ambiguity distance
of 15/7 = 2.143 m. All camera and translation stage control and synchronisation, and processing of data, is done
using Matlab (The Mathworks, Natick, MA, USA) on a i3 Windows 7 based PC with 8G of ram.

A white board target is affixed to a Macron 6 translation stage (Macron Dynamics, Croydon, PA, USA) that
is 3.4 m in length and fitted with a stepping motor capable of translating objects up to 2.4 m/s. These speeds
are suitable for live low speed tests of PQSA. To test CAVE, N = 9 phase steps is chosen spread evenly over 3π
radians, hence ∆θ = π/3. To test speeds of up to 40 m/s, full nine phase step sets of raw frames are acquired
of the board at static positions set by the translation stage, and then semi-simulated N = 9 phase step sets of
raw frames are constructed in the computer. The initial positions are 1.990 m for motion away from the camera,
and 3.190 m for motion towards the camera. The phase is computed for no motion at the initial positions, and
motion without correction; and after measurement of the radial velocity by CAVE the phase is computed with
motion correction. The mean and standard deviation of the velocity measurements are examined over an 11×11
pixel region of interest.

In another experiment we use a MESA Imaging SR4000 camera (Heptagon Micro Optics, Singapore) to
demonstrate velocity estimation by a modified form of PQSA. The SR400 is restricted to the classical four quad
data acquisition method, viz. θn ∈ {0, π/2, π, 3π/2}. To perform velocity estimation using the SR4000, we take
data from three separate sets of four quad raw frames and compute m0 from a first set of N raw frames, m1 from
second set of raw frames, and m2 from the third. Thus, we devise a multi-set extension of PQSA. The relative
effect of the phase shift in τ is larger between the mi than between In and I ′n, which is conjectured to improve
the linearity of the velocity measurements and reduce the apparent noise level in the velocity measurements.

4. RESULTS AND DISCUSSION

In Figs. 3a–3c the velocity measurements from the live low speed tests are displayed and compared. The real time
PQSA results are of the direct implementation of the method of Section 2.1 where the multi-set pseudo-quadrature
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(b) PQSA velocity estimation over
multiple sets.
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Figure 3: Velocity measurement tests. Error bars represent one standard deviation. The graphs 3a–3c are low
speed live velocity measurement tests by analysis of phase. Multi-set PQSA increases the displacement between
frames, reducing the apparent noise level in the velocity estimates. The high speed semi-simulated test result is
in 3d.

results are over multiple sets of raw frames taken with the SR4000 camera. The standard deviation is reduced by
one third or better between PQSA and multi-set PQSA, see Table 1, confirming the conjecture that the greater
motion between raw frame sets than between raw frames leads to less noise in the velocity measurements. The
measurements are all within uncertainty of the reference velocity, so we can make no statement of the relative
linearity between PQSA and multi-set PQSA. Therefore, the conjecture that multi-set PSQA improves linearity
is not confirmed. In future work faster object motion will be emplyed to test this linearity conjecture. The noise
level of multi-set PSQA is slightly less than DoP, Table 1. In these tests six phase steps are used for PSQA and
eight for DoP (four per phase measurement). DoP by six phase steps is possible (three per phase measurement),
but at an increase in noise.

Table 1: Summary of Methods for Linear Radial Velocity Measurement. PQSA is pseudo-quadrature signal
analysis, PQSA multi. is over multiple phase step sets, CAVE is correlation analysis velocity estimation, and
DoP is simple difference of phase. NR in prior literature denotes not reported.

Max. speed tested m/s STD m/s RMSE of mean m/s

DoP 1.8 0.13—0.43 0.049
PQSA 1.8 ≈ 1 0.15

Multi. PQSA 1.8 0.09—0.33 0.045
CAVE 40 < 1 3.5

Heide et al.3 6 ≤ 0.02 NR
Whyte et al.2 1.1 0.003–0.034 NR (R2 = 0.9969)

The semi-simulated high speed test of CAVE is presented in Fig. 3d. CAVE has noise STD better than 1 m/s



in this test. As summarised in Table 1, the accuracy as measured by the RMSE is 3.5 m/s, and the measured
velocities deviate from the true value beyond uncertainty. Harmonic error leads to the bias seen in Fig. 3d in
that the velocity measurements deviate from the true radial velocity beyond uncertainty.

In comparison, CW homodyne modulation2 measured velocity only up to 1.1 m/s with standard deviations
in the order of 3% of the speed, albeit requiring more than 100 raw measurements. Heterodyne and homodyne
modulation together3 with two cameras notably measured radial velocity up to ±20 m/s simulated for calibration
and up to 6 m/s testing with reported errors less than 0.2 m/s, but with significant modification to the camera
hardware. Taking three frames across the two cameras, and leveraging background subtraction on pixel, they
measured velocity and distance simultaneously.

CAVE is extensible to polynomial motion. Examining Eqns. 14–15, acceleration is accounted for by including
a second order term n2. This process is more subtle than simply adding an extra column to the matrix in
Eqn. (15), however, hence is currently untested and left for future work. Also, in future work, live controlled high
speed motion systems will be investigated for testing of the motion measurement methods, including nonlinear
motion.
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Figure 4: Estimation of phase under motion. Error bars represent three standard deviations. The CAVE
measurement corrected phase computation is improved over no motion correction, albeit at an increase in STD.

Phase estimate accuracy and standard deviation are summarised in Fig. 4. Using the CAVE measurements,
phase estimation by solving Eqn. (17) reduces the error on average, but the STD in phase estimates increases
on average from 17 millirad to 24 millirad, i.e. a factor of 1.4.

5. CONCLUSION

In this work two new methods for linear radial velocity measurement from time-of-flight range image camera data
are presented, namely CAVE and PQSA. The new methods are tested and compared to previous methods, to-
talling six distinct approaches to measuring radial motion. Correction of motion error in the phase measurements
is also tested, along with the impact of radial motion correction on the standard deviation of phase measurement.
Overall, CAVE performs well on high speed test with standard deviation of less than 1 m/s and RMSE of 3.5
m/s over range (−)40—(+)40 m/s. An extension of PQSA, called multi-set PQSA performs well at low speeds
with standard deviations of 0.09—0.33 m/s and RMSE of 0.045 m/s over the range (−)1.8—(+)1.8 m/s.



The results show that through careful modelling radial motion is measurable and the effect of such motion
correctable. We do not need to reduce the number of frames, nor the integration time of each raw frame,
to reduce the influence radial motion has on the quality of the data. Instead, motion artefacts are embraced
as something to be measured, rather than mitigated, in which case it is advantageous to increase the total
integration time to increase the impact, hence measurability of motion. Future work will extend these principles
to the discontinuous motion artefacts cause by an edge passing transverse to the radial axis over the view of a
pixel. We are currently investigating acceleration measurement and statistical methods for transverse motion
measurement and correction. The ultimate goal is to extend the ideas presented herein to full three-dimensional
velocity measurement.
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