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1School of Physical Sciences, The Open University, Milton Keynes, UK (paul.streeter@open.ac.uk), 2Space Sci-

ence and Technology Department, STFC, RAL, UK.

Introduction:  Atmospheric dust is ubiquitous on 

Mars, and as a result of its absorption and scattering 

of radiation, is the key driver of the martian circula-

tion. Accurately representing the complex spatial and 

temporal distribution of dust is therefore crucial for 

understanding Mars’ atmospheric dynamics. In par-

ticular, the vertical representation of the dust distribu-

tion in Mars’ atmosphere has been shown to have a 

significant effect on results from modelling and as-

similation [1,2,3]. With the goal of more accurately 

representing this distribution, the assimilation of dust 

vertical information is a valuable technique which is 

being increasingly explored [4,5]. However, it brings 

with it its own challenges and methodological ques-

tions to be explored. 

Model and assimilation details: We use the 

LMD-UK Mars Global Circulation Model (MGCM), 

which solves the meteorological primitive equations 

of fluid dynamics, radiative and other parameterised 

physics to calculate the state of the martian atmos-

phere [6,7]. The UK version of the MGCM possesses 

a spectral dynamical core and semi-Lagrangian ad-

vection scheme [8], and is a collaboration between the 

Laboratoire de Météorologie Dynamique, The Open 

University, the University of Oxford, and the Instituto 

de Astrofisica de Andalucia. The model was run using 

a range of spectral and vertical resolutions, the latter 

spaced logarithmically. The assimilation scheme used 

was a modified version of the Analysis Correction 

scheme developed at the Met Office [9], adapted for 

use on Mars [10]. This method has the advantage of 

being computationally inexpensive, and its use of re-

peated insertion, weighted over a time window of 

about six hours, helps counter the issue of relaxation 

of the atmospheric state – an especially significant 

problem given the low thermal inertia of Mars’ atmos-

phere. 

Retrievals:  The retrievals used in this study are 

from the Mars Climate Sounder (MCS) instrument 

aboard the Mars Reconnaissance Orbiter (MRO) [11], 

which now has amassed over five full martian years’ 

worth of data. For this study, the assimilated MCS 

variables were temperature and dust profiles. Temper-

ature profiles extend from the surface to approxi-

mately 100 km, and dust profiles from as low as 10 

km above the surface up to a maximum height of ap-

proximately 50 km. Retrieval of dust profiles allows 

MCS to observe the complex vertical dust structure in 

the atmosphere. The retrieval version used is 5.2, a re-

processing using updated 2D geometry [12]. This re-

sults in improved retrievals, especially in the polar re-

gions. 

While not used in this study, the NOMAD instru-

ment aboard ExoMars TGO will soon provide another 

high-volume source of dust profiles alongside MCS 

[13], and should return observations with an even 

higher vertical resolution. 

Figure 1: Model density-scaled dust opacity 

(DSO) at MY 29 between sols 587-590 in an assimi-

lation of MCS data with (top) prescribed dust sce-

nario and (middle) indirectly assimilating dust from 

its temperature signature, as compared to (bottom) 

nightside MCS retrievals [14]. 

Discussion: The assimilation of MCS dust pro-

files poses unique technical challenges, but presents 

the opportunity of representing Mars’ vertical dust 

distribution with unprecedented spatial and temporal 

accuracy within a GCM. Some outstanding questions 

for further experimentation and discussion include: 
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Figure 2: Zonal- and time-mean dust mass mix-

ing ratio averaged over 5 sols around Ls 300 of 

MY26, from an assimilation of TES dust column op-

tical depth. Dust is freely transported but scaled to 

match TES column values [15]. 

What are the optimal spatial and, in particular, 

vertical model resolutions for assimilation of this 

data? 

Can dust profile assimilation aid in forecasting? 

Previous indirect assimilation of vertical dust via its 

MCS temperature signature has yielded a forecast 

time of 10 sols [5]; how dependent is this on the as-

similation scheme and the choice of assimilating var-

iables? 

How should we approach the bimodal nature of 

MCS local times? Should we give higher weighting to 

nightside dust observations, which tend to have better 

vertical coverage due to reduced scattering? And how 

much can we validly infer from the high day-night 

variability seen in MCS dust profiles? 

What are the best heuristics for filtering spurious 

opacities which could disrupt the assimilation, for ex-

ample due to CO2 ice or surface reflectance [16])? 

What are the optimal ways of dealing with spatial 

and temporal gaps in the dataset? 

How can we best represent the dust distribution 

beyond the range of MCS, especially in the lowest 5-

10 km of the atmosphere? 

What are the advantages and disadvantages of di-

rectly assimilating the dust field vs indirectly updat-

ing the dust field via its temperature signature, as seen 

in Fig. 1? 

Dust profile assimilation has been used to track in-

dividual dust storm events [4]; what can this tell us 

about storm formation and evolution, and can it be 

used for storm forecasting? 

How can we best constrain and validate the col-

umn optical depths of MCS dust profiles? 

Some ways forward regarding these questions will 

be explored, including comparative reanalyses and 

validation against different orbital datasets. Compari-

sons against MCS and other retrievals (such as 

NOMAD) should provide insight into the advantages 

of various in-model representations of features such 

as the dust distribution as well as the possible ad-

vantages or disadvantages of pruning the assimilated 

dataset. Meanwhile, alternate orbital or even ground-

based sources of column opacity (such as Mars Ex-

press and MSL) could help better constrain the distri-

bution of dust not seen by MCS and offer clues how 

best to proceed in periods when MCS data is missing 

or limited. Some results of intercomparisons will be 

presented with the aim of fostering a more general dis-

cussion on MCS assimilation techniques. 
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