170 research outputs found

    Hypoxia and hyperglycaemia determine why some endometrial tumours fail to respond to metformin

    Get PDF
    High expression of Ki67, a proliferation marker, is associated with reduced endometrial cancer-specific survival. Pre-surgical metformin reduces tumour Ki-67 expression in some women with endometrial cancer. Metformin's anti-cancer activity may relate to effects on cellular energy metabolism. Since tumour hypoxia and glucose availability are major cellular redox determinants, we evaluated their role in endometrial cancer response to metformin. Endometrial cancer biopsies from women treated with pre-surgical metformin were tested for the hypoxia markers, HIF-1α and CA-9. Endometrial cancer cell lines were treated with metformin in variable glucose concentrations in normoxia or hypoxia and cell viability, mitochondrial biogenesis, function and energy metabolism were assessed. In women treated with metformin (n = 28), Ki-67 response was lower in hypoxic tumours. Metformin showed minimal cytostatic effects towards Ishikawa and HEC1A cells in conventional medium (25 mM glucose). In low glucose (5.5 mM), a dose-dependent cytostatic effect was observed in normoxia but attenuated in hypoxia. Tumours treated with metformin showed increased mitochondrial mass (n = 25), while in cultured cells metformin decreased mitochondrial function. Metformin targets mitochondrial respiration, however, in hypoxic, high glucose conditions, there was a switch to glycolytic metabolism and decreased metformin response. Understanding the metabolic adaptations of endometrial tumours may identify patients likely to derive clinical benefit from metformin

    Hypoxia-regulated glucose transporter Glut-1 may influence chemosensitivity to some alkylating agents: Results of EORTC (First Translational Award) study of the relevance of tumour hypoxia to the outcome of chemotherapy in human tumour-derived xenografts

    Get PDF
    Tumour hypoxia confers poor prognosis in a wide range of solid tumours, due to an increased malignancy, increased likelihood of metastasis and treatment resistance. Poorly oxygenated tumours are resistant to both radiation therapy and chemotherapy. However, although the link between radiation therapy and hypoxia is well established in a range of clinical studies, evidence of its influence on chemotherapy response is lacking. In this study, a panel of human tumour-derived xenografts that have been characterised previously for in vivo response to a large series of anti-cancer agents, and have been found to show chemosensitivities that correlate strongly with the parent tumour, were used to address this issue. Immunohistochemistry was carried out on formalinfixed, paraffin-embedded sections of xenograft samples to detect expression of the intrinsic hypoxia marker Glut-1 and adducts of the bioreductive hypoxia marker pimonidazole. Glut-1 scores correlated significantly with T/C values for CCNU sensitivity (r=0.439, P=0.036, n=23) and showed a borderline significant correlation with dacarbazine T/C (r=0.405, P=0.076, n=20). However, there was no correlation between both Glut-1 and pimonidazole scores and T/C obtained for the bioreductive drug mitomycin C. The use of human tumour-derived xenografts offers a potentially useful way of using archival material to determine the influence of hypoxia and other tumour-microenvironmental factors on chemosensitivity without the direct use of human subjects

    31P magnetic resonance spectroscopy as a predictor of efficacy in photodynamic therapy using differently charged zinc phthalocyanines

    Get PDF
    Photodynamic therapy (PDT) is a developing approach to the treatment of solid tumours which requires the combined action of light and a photosensitizing drug in the presence of adequate levels of molecular oxygen. We have developed a novel series of photosensitizers based on zinc phthalocyanine which are water-soluble and contain neutral (TDEPC), positive (PPC) and negative (TCPC) side-chains. The PDT effects of these sensitizers have been studied in a mouse model bearing the RIF-1 murine fibrosarcoma line studying tumour regrowth delay, phosphate metabolism by magnetic resonance spectroscopy (MRS) and blood flow, using D2O uptake and MRS. The two main aims of the study were to determine if MRS measurements made at the time of PDT treatment could potentially be predictive of ultimate PDT efficacy and to assess the effects of sensitizer charge on PDT in this model. It was clearly demonstrated that there is a relationship between MRS measurements during and immediately following PDT and the ultimate effect on the tumour. For all three drugs, tumour regrowth delay was greater with a 1-h time interval between drug and light administration than with a 24-h interval. In both cases, the order of tumour regrowth delay was PPC > TDEPC = TCPC (though the data at 24 h were not statistically significant). Correspondingly, there were greater effects on phosphate metabolism (measured at the time of PDT or soon after) for the 1-h than for the 24-h time interval. Again effects were greatest with the cationic PPC, with the sequence being PPC > TDEPC > TCPC. A parallel sequence was observed for the blood flow effects, demonstrating that reduction in blood flow is an important factor in PDT with these sensitizers. © 1999 Cancer Research Campaig

    Measure of Activity Performance in the Hand (MAP-Hand) questionnaire

    Get PDF
    Background: Developed in the Norway, the Measure of Activity Performance of the Hand (MAP-Hand) assesses 18 activities performed using the hands. It was developed for people with rheumatoid arthritis (RA) using patient generated items, which are scored on a 0-3 scale and summarised into a total score range (0 to 54). This study reports the development and psychometric testing of the British English MAP-Hand in a UK population of people with RA. Methods: Recruitment took place in the National Health Service (NHS) through 17 Rheumatology outpatient clinics. Phase 1 (cross-cultural adaptation) involved: forward translation to British English; synthesis; expert panel review and cognitive debriefing interviews with people with RA. Phase 2 (psychometric testing) involved postal completion of the MAP-Hand, Health Assessment Questionnaire (HAQ), Upper Limb HAQ (ULHAQ), Short-Form 36 (SF-36v2) and Disabilities of the Arm Shoulder Hand (DASH) to measure internal consistency (Cronbach’s alpha); concurrent validity (Spearman’s correlations) and Minimal Detectable Difference (MDC95). The MAP-Hand was repeated three-weeks later to assess test-retest reliability (linear weighted kappa and Intra-Class Correlations (ICC (2,1)). Unidimensionality (internal construct validity) was assessed using (i) Confirmatory Factor Analysis (CFA) (ii) Mokken scaling and (iii) Rasch model. The RUMM2030 software was used, applying the Rasch partial credit model. Results: In Phase 1, 31 participants considered all items relevant. In Phase 2, 340 people completed Test-1 and 273 (80%) completed Test-2 questionnaires. Internal consistency was excellent (α=0.96). Test-retest reliability was good (ICC (2,1) = 0.96 (95% CI 0.94, 0.97)). The MAP-Hand correlated strongly with HAQ20 (rs=.88), ULHAQ (rs=.91), SF-36v2 Physical Functioning (PF) Score (rs=-.80) and DASH (rs=.93), indicating strong concurrent validity. CFA failed to support unidimensionality (Chi-Square 236.0 (df 120; p <0.001)). However, Mokken scaling suggested a probabilistic ordering. There was differential item functioning (DIF) for gender. Four testlets were formed, resulting in much improved fit and unidimensionality. Following this, testlets were further merged in pairs where opposite bias existed. This resulted in perfect fit to the model. Conclusions: The British English version of the MAP-Hand has good validity and reliability in people with RA and can be used in both research and clinical practice. Keywords: PROMS; Patient Reported Outcome Measures; hand activity performance; hand function; hand pain; psychometric testing; Rasch analysis; validity; reliabilit

    p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells.</p> <p>Methods</p> <p>Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated.</p> <p>Results</p> <p>YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics.</p> <p>Conclusion</p> <p>Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists.</p

    Does reductive metabolism predict response to tirapazamine (SR 4233) in human non-small-cell lung cancer cell lines?

    Get PDF
    The bioreductive drug tirapazamine (TPZ, SR 4233, WIN 59075) is a lead compound in a series of potent cytotoxins that selectively kill hypoxic rodent and human solid tumour cells in vitro and in vivo. Phases II and III trials have demonstrated its efficacy in combination with both fractionated radiotherapy and some chemotherapy. We have evaluated the generality of an enzyme-directed approach to TPZ toxicity by examining the importance of the one-electron reducing enzyme NADPH:cytochrome P450 reductase (P450R) in the metabolism and toxicity of this lead prodrug in a panel of seven human non-small-cell lung cancer cell lines. We relate our findings on TPZ sensitivity in these lung lines with our previously published results on TPZ sensitivity in six human breast cancer cell lines (Patterson et al (1995) Br J Cancer 72: 1144–1150) and with the sensitivity of all these cell types to eight unrelated cancer chemotherapeutic agents with diverse modes of action. Our results demonstrate that P450R plays a significant role in the activation of TPZ in this panel of lung lines, which is consistent with previous observations in a panel of breast cancer cell lines (Patterson et al (1995) Br J Cancer 72: 1144–1150; Patterson et al (1997) Br J Cancer 76: 1338–1347). However, in the lung lines it is likely that it is the inherent ability of these cells to respond to multiple forms of DNA damage, including that arising from P450R-dependent TPZ metabolism, that underlies the ultimate expression of toxicity. © 1999 Cancer Research Campaig
    corecore