291 research outputs found

    Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF)

    Get PDF
    Background: Atrophy of skeletal muscle in cancer cachexia has been attributed to a tumour-produced highly glycosylated peptide called proteolysis-inducing factor (PIF). The action of PIF is mediated through a high-affinity membrane receptor in muscle. This study investigates the ability of peptides derived from the 20 N-terminal amino acids of the receptor to neutralise PIF action both in vitro and in vivo. Methods: Proteolysis-inducing factor was purified from the MAC16 tumour using an initial pronase digestion, followed by binding on DEAE cellulose, and the pronase was inactivated by heating to 80°C, before purification of the PIF using affinity chromatography. In vitro studies were carried out using C2C12 murine myotubes, while in vivo studies employed mice bearing the cachexia-inducing MAC16 tumour. Results: The process resulted in almost a 23?000-fold purification of PIF, but with a recovery of only 0.004%. Both the D- and L-forms of the 20mer peptide attenuated PIF-induced protein degradation in vitro through the ubiquitin-proteosome proteolytic pathway and increased expression of myosin. In vivo studies showed that neither the D- nor the L-peptides significantly attenuated weight loss, although the D-peptide did show a tendency to increase lean body mass. Conclusion: These results suggest that the peptides may be too hydrophilic to be used as therapeutic agents, but confirm the importance of the receptor in the action of the PIF on muscle protein degradation

    Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation

    Get PDF
    The last steps of the Leu biosynthetic pathway and the Met chain elongation cycle for glucosinolate formation share identical reaction types suggesting a close evolutionary relationship of these pathways. Both pathways involve the condensation of acetyl-CoA and a 2-oxo acid, isomerization of the resulting 2-malate derivative to form a 3-malate derivative, the oxidation-decarboxylation of the 3-malate derivative to give an elongated 2-oxo acid, and transamination to generate the corresponding amino acid. We have now analyzed the genes encoding the isomerization reaction, the second step of this sequence, in Arabidopsis thaliana. One gene encodes the large subunit and three encode small subunits of this enzyme, referred to as isopropylmalate isomerase (IPMI) with respect to the Leu pathway. Metabolic profiling of large subunit mutants revealed accumulation of intermediates of both Leu biosynthesis and Met chain elongation, and an altered composition of aliphatic glucosinolates demonstrating the function of this gene in both pathways. In contrast, the small subunits appear to be specialized to either Leu biosynthesis or Met chain elongation. Green fluorescent protein tagging experiments confirms the import of one of the IPMI small subunits into the chloroplast, the localization of the Met chain elongation pathway in these organelles. These results suggest the presence of different heterodimeric IPMIs in Arabidopsis chloroplasts with distinct substrate specificities for Leu or glucosinolate metabolism determined by the nature of the different small subunit

    Triptans attenuate capsaicin-induced CREB phosphorylation within the trigeminal nucleus caudalis: a mechanism to prevent central sensitization?

    Get PDF
    The c-AMP-responsive element binding protein (CREB) and its phosphorylated product (P-CREB) are nuclear proteins expressed after stimulation of pain-producing areas of the spinal cord. There is evidence indicating that central sensitization within dorsal horn neurons is dependent on P-CREB transcriptional regulation. The objectives of the study were to investigate the expression of P-CREB in cells in rat trigeminal nucleus caudalis after noxious stimulation and to determine whether pre-treatment with specific anti-migraine agents modulate this expression. CREB and P-CREB labelling was investigated within the trigeminal caudalis by immunohistochemistry after capsaicin stimulation. Subsequently, the effect of i.v. pre-treatment with either sumatriptan (n = 5), or naratriptan (n = 7) on P-CREB expression was studied. Five animals pre-treated with i.v. normal saline were served as controls. CREB and P-CREB labelling was robust in all animal groups within Sp5C. Both naratriptan and sumatriptan decreased P-CREB expression (p = 0.0003 and 0.0013) within the Sp5C. Triptans attenuate activation of CREB within the central parts of the trigeminal system, thereby leading to potential inhibition of central sensitization. P-CREB may serve as a new marker for post-synaptic neuronal activation within Sp5C in animal models relevant to migraine

    Psychometric Evaluation of the Altered States of Consciousness Rating Scale (OAV)

    Get PDF
    BACKGROUND: The OAV questionnaire has been developed to integrate research on altered states of consciousness (ASC). It measures three primary and one secondary dimensions of ASC that are hypothesized to be invariant across ASC induction methods. The OAV rating scale has been in use for more than 20 years and applied internationally in a broad range of research fields, yet its factorial structure has never been tested by structural equation modeling techniques and its psychometric properties have never been examined in large samples of experimentally induced ASC. METHODOLOGY/PRINCIPAL FINDINGS: The present study conducted a psychometric evaluation of the OAV in a sample of psilocybin (n = 327), ketamine (n = 162), and MDMA (n = 102) induced ASC that was obtained by pooling data from 43 experimental studies. The factorial structure was examined by confirmatory factor analysis, exploratory structural equation modeling, hierarchical item clustering (ICLUST), and multiple indicators multiple causes (MIMIC) modeling. The originally proposed model did not fit the data well even if zero-constraints on non-target factor loadings and residual correlations were relaxed. Furthermore, ICLUST suggested that the "oceanic boundlessness" and "visionary restructuralization" factors could be combined on a high level of the construct hierarchy. However, because these factors were multidimensional, we extracted and examined 11 new lower order factors. MIMIC modeling indicated that these factors were highly measurement invariant across drugs, settings, questionnaire versions, and sexes. The new factors were also demonstrated to have improved homogeneities, satisfactory reliabilities, discriminant and convergent validities, and to differentiate well among the three drug groups. CONCLUSIONS/SIGNIFICANCE: The original scales of the OAV were shown to be multidimensional constructs. Eleven new lower order scales were constructed and demonstrated to have desirable psychometric properties. The new lower order scales are most likely better suited to assess drug induced ASC

    Genetic regulation of delayed-type hypersensitivity responses to poly (Tyr,Glu)-poly(DLAla)--poly(Lys): expression of the genetic defect in the induction and manifestation phases in H-2s and H-2f mice.

    No full text
    The genetic defect of H-2s and H-2s non-responder mouse strains in both the induction and manifestation phases of delayed-type hypersensitivity (DTH) responses to poly(LTyr,LGlu)-poly(DLAla)--poly(LLys)[(T,G)-A--L] was analysed. Utilizing an in vitro system to activate DTH effector T cells, we observed that non-adherent T cells of (H-2f X H-2b) F1 or (H-2s X H-2b)F1 responder mice, could not be activated on antigen bearing adherent cells of H-2f or H-2s haplotypes. On the other hand, these T cells were effectively sensitized on adherent cells derived from either F1 or parental (H-2b) responder mice. These results indicate that in these mouse strains the genetic defect, in the induction phase of DTH, is expressed at the level of the antigen presenting cell. In subsequent experiments, we were able to "correct' the non-responsiveness of H-2s recipients by transfer of educated and irradiated (H-2s X H-2b)F1 T cells together with normal F1 adherent cells. Normal non-adherent and nylon wool enriched T cells failed to restore these responses. Similarly, antigen-pulsed F1 irradiated peritoneal exudate cells could stimulate DTH responses in SJL recipients of (SJL X C57BL/6)F1 (T,G)-A--L educated cells. The genetic defect of H-2s mice in the manifestation phase of the DTH reaction is thus also expressed on the antigen presenting cell
    corecore