307 research outputs found

    The Intersection of an Epidemic and Pandemic: Smoking, Risk-Taking, and COVID-19

    Full text link
    Electronic cigarette use has risen drastically in recent years among teens and young adults. Rates of conventional cigarette use have decreased, while rates of electronic cigarette use are on the rise. Knowledge and perceptions of the risks and benefits of conventional and electronic cigarettes greatly impacts adolescents and young adults’ decisions to use these products. Published literature explores the issues of social norms, intertemporal choice, present bias, prospect theory, and hyperbolic discounting as means to explain the way in which young populations perceive risk and risky behavior. Research suggests that children and young adults believe that e-cigarettes are safer, less addictive, less risky, and more socially acceptable than conventional cigarettes. In addition to these findings, this study found that smokers are more likely to engage in risky behavior in general, and throughout the coronavirus pandemic. According to the World Health Organization, individuals who smoke are more likely to experience complications once contracting the coronavirus disease. This study calls for the need to educate frequent smokers, of both electronic and conventional cigarettes, about their individual risk factors in light of the recent pandemic

    Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    Get PDF
    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production

    Model study of adsorbed metallic quantum dots: Na on Cu(111)

    Get PDF
    We model electronic properties of the second monolayer Na adatom islands (quantum dots) on the Cu(111) surface covered homogeneously by the first Na monolayer. An axially-symmetric three-dimensional jellium model, taking into account the effects due to the first Na monolayer and the Cu substrate, has been developed. The electronic structure is solved within the local-density approximation of the density-functional theory using a real-space multigrid method. The model enables the study of systems consisting of thousands of Na-atoms. The results for the local density of states are compared with differential conductance (dI/dVdI/dV) spectra and constant current topographs from Scanning Tunneling Microscopy.Comment: 10 pages, 8 figures. For better quality figures, download http://www.fyslab.hut.fi/~tto/cylart1.pd

    Polarizabilities of Adsorbed and Assembled Molecules: Measuring the Conductance through Buried Contacts

    Get PDF
    We have measured the polarizabilities of four families of molecules adsorbed to Au{111} surfaces, with structures ranging from fully saturated to fully conjugated, including single-molecule switches. Measured polarizabilities increase with increasing length and conjugation in the adsorbed molecules and are consistent with theoretical calculations. For single-molecule switches, the polarizability reflects the difference in substrate-molecule electronic coupling in the ON and OFF conductance states. Calculations suggest that the switch between the two conductance states is correlated with an oxidation state change in a nitro functional group in the switch molecules

    Observation of Interfacial Damage in a Silk-Epoxy Composite, Using a Simple Mechanoresponsive Fluorescent Probe

    Get PDF
    Polymer composites are found throughout the world both natural and artificial in origin. In the vast majority of applications, composites serve as structural support or reinforcement roles. Demand for lightweight tough composites is growing in multiple application spaces such as areospace, biomaterials, and infrastructure with physical properties as diverse as the applications. The unifying component in all composites is the presence of an interphase. Many measurement techniques and measurement tools have been developed for the study of this crucial region in composite materials. Many of these methods are great for the measurment and study of bulk properties or model systems. However, development of methods that permit the direct observation of interactions at the interphase during applied stress are needed. Here we employ fluorescence lifetime imaging and hyperspectral imaging to observe activation of a fluorogenic dye at the composite interface as a result of applied stress. The advantages of this sytem include commercial availability of the dye precursor, and simple one-pot functionalization. The attachment of the dye at the interface is easily monitored through emission wavelength shifts and fluorescence lifetime variations. Interfacial mechano-responsive dyes have potential for both fundamental studies as well as industrial use as a structural health monitoring tool.Funded by AFOS

    Characterization and Hydrodesulfurization Activity of CoMo Catalysts Supported on Boron-Doped Sol-Gel Alumina

    Get PDF
    A series of hydrodesulfurization (HDS) catalysts was prepared by impregnation of Co and Mo on sol-gel B-Al2O3 supports with B/Al ratios of 0, 0.02, 0.04, 0.08, 0.20, 0.32, 0.49, and 0.61. The thiophene HDS and dibenzothiophene (DBT) HDS activities were both maximal for the catalyst with B/Al = 0.04, with respective values 70% and 42% higher than those for an industrial reference catalyst. These maxima in HDS activity correlated with the previously reported presence of isolated BO4 surface species. These BO4 species were responsible for a local maximum in the acidity of the B-Al2O3 supports when B/Al = 0.04. In contrast, the formation of mixed oxides (A9B2 and A2B) or B2O3 that also resulted in enhanced acidity of the B-Al2O3 supports had a detrimental effect on the HDS activity. The 4,6-dimethyldibenzothiophene (4,6-DMDBT) HDS activity over the CoMo/B-Al2O3 catalysts decreased when the B/Al ratio was increased. This was attributed to the strong direct desulfurization character of the CoMo catalysts supported on the B-Al2O3 supports, because high hydrogenation ability toward the C=C double bonds is essential prior to sulfur removal from 4,6-DMDBT. The excellent performance in the thiophene and DBT HDS of the CoMo/B-Al2O3 catalysts is particularly useful for ultra-deep HDS of light fractions

    Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111}

    Full text link
    When alkanethiolate self-assembled monolayers on Au{111} are exchanged with alkaneselenols from solution, replacement of thiolates by selenols is rapid and complete, and is well described by perimeter-dependent island growth kinetics. The monolayer structures change as selenolate coverage increases, from being epitaxial and consistent with the initial thiolate structure to being characteristic of selenolate monolayer structures. At room temperature and at positive sample bias in scanning tunneling microscopy, the selenolate-gold attachment is labile, and molecules exchange positions with neighboring thiolates. The scanning tunneling microscope probe can be used to induce these place-exchange reactions
    corecore