1,959 research outputs found

    Nuclear magnetic resonance cryoporometry

    Get PDF
    Nuclear Magnetic Resonance (NMR) cryoporometry is a technique for non-destructively determining pore size distributions in porous media through the observation of the depressed melting point of a confined liquid. It is suitable for measuring pore diameters in the range 2 nm-1 mu m, depending on the absorbate. Whilst NMR cryoporometry is a perturbative measurement, the results are independent of spin interactions at the pore surface and so can offer direct measurements of pore volume as a function of pore diameter. Pore size distributions obtained with NMR cryoporometry have been shown to compare favourably with those from other methods such as gas adsorption, DSC thermoporosimetry, and SANS. The applications of NMR cryoporometry include studies of silica gels, bones, cements, rocks and many other porous materials. It is also possible to adapt the basic experiment to provide structural resolution in spatially-dependent pore size distributions, or behavioural information about the confined liquid

    Characterisation of porous solids using small-angle scattering and NMR cryoporometry

    Get PDF
    The characteristics of several porous systems have been studied by the use of small-angle neutron scattering [SANS] and nuclear magnetic resonance [NMR] techniques. The measurements reveal different characteristics for sol-gel silicas, activated carbons and ordered mesoporous silicas of the MCM and SBA type. Good agreement is obtained between gas adsorption measurements and the NMR and SANS results for pore sizes above 10 nm. Recent measurements of the water/ice phase transformation in SBA silicas by neutron diffraction are also presented and indicate a complex relationship that will require more detailed treatment in terms of the possible effects of microporosity in the silica substrate. The complementarity of the different methods is emphasised and there is brief discussion of issues related to possible future developments

    A comparison and evaluation of satellite derived positions of tracking stations

    Get PDF
    A comparison is presented of sets of satellite tracking station coordinate values published in the past few years by a number of investigators, i.e. Goddard Space Flight Center, Smithsonian Astrophysical Observatory, Ohio State University, The Naval Weapons Laboratory, Air Force Cambridge Research Laboratories, and Wallops Island. The comparisons have been made in terms of latitude, longitude and height. The results of the various solutions have been compared directly and also with external standards such as local survey data and gravimetrically derived geoid heights. After taking into account systematic rotations, latitude and longitude agreement on a global basis is generally 15 meters or better, on the North American Datum agreement is generally better than 10 meters. Allowing for scale differences (of the order of 2 ppm) radial agreement is generally of the order of 10 meters

    Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation

    Get PDF
    The Gibbs-Thomson effect modifies the pressure and temperature at which clathrates occur, hence altering the depth at which they occur in the seabed. Nuclear magnetic resonance (NMR) measurements as a function of temperature are being conducted for water/ice/ hydrate systems in a range of pore geometries, including templated SBA-15 silicas, controlled pore glasses and sol-gel silicas. Rotator-phase plastic ice is shown to be present in confined geometry, and bulk tetrahydrofuran hydrate is also shown to probably have a rotator phase. A novel NMR cryoporometry protocol, which probes both melting and freezing events while avoiding the usual problem of supercooling for the freezing event, has been developed. This enables a detailed probing of the system for a given pore size and geometry and the exploration of differences between hydrate formation and dissociation processes inside pores. These process differences have an important effect on the environment, as they impact on the ability of a marine hydrate system to re-form once warmed above a critical temperature. Ab initio quantum-mechanical molecular dynamics calculations are also being employed to probe the dynamics of liquids in pores at nanometric dimensions

    Formation and properties of metal-oxygen atomic chains

    Get PDF
    Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations that give insight in the physical mechanism of the oxygen-induced strengthening of the linear bonds and the conductance of the metal-oxygen chains.Comment: 10 pages, 9 fig

    NOS/NGS activities to support development of radio interferometric surveying techniques

    Get PDF
    National Geodetic Survey activities towards the development of operational geodetic survey systems based on radio interferometry are reviewed. Information about the field procedures, data reduction and analysis, and the results obtained to date is presented

    Rhythm and Vowel Quality in Accents of English

    Get PDF
    In a sample of 27 speakers of Scottish Standard English two notoriously variable consonantal features are investigated: the contrast of /m/ and /w/ and non-prevocalic /r/, the latter both in terms of its presence or absence and the phonetic form it takes, if present. The pattern of realisation of non-prevocalic /r/ largely confirms previously reported findings. But there are a number of surprising results regarding the merger of /m/ and /w/ and the loss of non-prevocalic /r/: While the former is more likely to happen in younger speakers and females, the latter seems more likely in older speakers and males. This is suggestive of change in progress leading to a loss of the /m/ - /w/ contrast, while the variation found in non-prevocalic /r/ follows an almost inverse sociolinguistic pattern that does not suggest any such change and is additionally largely explicable in language-internal terms. One phenomenon requiring further investigation is the curious effect direct contact with Southern English accents seems to have on non-prevocalic /r/: innovation on the structural level (i.e. loss) and conservatism on the realisational level (i.e. increased incidence of [r] and [r]) appear to be conditioned by the same sociolinguistic factors

    Observation of magnetic circular dichroism in Fe L_{2,3} x-ray-fluorescence spectra

    Get PDF
    We report experiments demonstrating circular dichroism in the x-ray-fluorescence spectra of magnetic systems, as predicted by a recent theory. The data, on the L_{2,3} edges of ferromagnetic iron, are compared with fully relativistic local spin density functional calculations, and the relationship between the dichroic spectra and the spin-resolved local density of occupied states is discussed

    Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social-ecological systems

    Get PDF
    When evaluating the impact of a biodiversity conservation intervention, a ‘counterfactual’ is needed, as true experimental controls are typically unavailable. Counterfactuals are possible alternative system trajectories in the absence of an intervention and comparing observed outcomes against the chosen counterfactual allows the impact (change attributable to the intervention) to be determined. Since counterfactuals are hypothetical scenarios, and by definition never occur, they must be estimated. Sometimes there may be many plausible counterfactuals, given that they can include multiple drivers of biodiversity change, and be defined on a range of spatial or temporal scales. Here we posit that, by definition, conservation interventions always take place in social-ecological systems (SES; ecological systems integrated with human actors). Evaluating the impact of an intervention within an SES therefore means taking into account the counterfactuals assumed by different human actors. Use of different counterfactuals by different actors will give rise to perceived differences in the impacts of interventions, which may lead to disagreement about its success or the effectiveness of the underlying approach. Despite that there are biophysical biodiversity trends, it is often true that no single counterfactual is definitively the ‘right one’ for conservation assessment, so multiple evaluations of intervention efficacy could be considered justifiable. Therefore, we propose the need to calculate a quantity termed the sum of perceived differences, which captures the range of impact estimates associated with different actors within a given SES. The sum of perceived differences gives some indication how closely actors within an SES agree on the impacts of an intervention. We illustrate the concept of perceived differences using a set of global, national and regional case studies. We discuss options for minimising the sum, drawing upon literatures from conservation science, psychology, behavioural economics, management and finance

    An embedding scheme for the Dirac equation

    Full text link
    An embedding scheme is developed for the Dirac Hamiltonian H. Dividing space into regions I and II separated by surface S, an expression is derived for the expectation value of H which makes explicit reference to a trial function defined in I alone, with all details of region II replaced by an effective potential acting on S and which is related to the Green function of region II. Stationary solutions provide approximations to the eigenstates of H within I. The Green function for the embedded Hamiltonian is equal to the Green function for the entire system in region I. Application of the method is illustrated for the problem of a hydrogen atom in a spherical cavity and an Au(001)/Ag/Au(001) sandwich structure using basis sets that satisfy kinetic balance.Comment: 16 pages, 5 figure
    corecore