23 research outputs found

    Anticoagulant treatment at a specialized outpatient anticoagulant therapy unit, a descriptive study

    Get PDF
    BACKGROUND: The indications for continuous oral anticoagulant treatment, the target interval and the procedures for withdrawing treatment have changed in the last 10 years. METHODS: Patients on continuous oral anticoagulant treatment at the Outpatient Anticoagulant Clinic at Umeå University Hospital in 2002 were included in a descriptive study (n = 900). 263 of those had a mechanical heart valve prosthesis. Only patient records for patients with other indications than mechanical heart valve prosthesis were examined. 582 of those records were found. In the 55 remaining patients some clinical information was retrieved from the computerised warfarin dosage database. These latter, more unsure clinical data, are presented separately. Anticoagulant treatment was discontinued if lack of proper indication or presence of too high risk for hemorrhagic complications were found. RESULTS: The prevalence of continuous oral anticoagulant treatment in the uptake area was 0.65%. The most common target interval was INR 2.1–3.0, but patients with a mechanical heart valve prosthesis were often treated more aggressively, i.e. with a higher INR target interval. Of the patients on continuous treatment, 26.6% of the INR values were outside 2.0–3.0. The most common reasons for oral anticoagulant treatment were atrial fibrillation or mechanical heart valve prosthesis, in contrast to earlier findings in studies of our population in 1987 and 1990. We found 90 patients (10.0%) without proper indication for oral anticoagulant treatment or too high risk, and their treatment was discontinued. CONCLUSION: In patients on oral anticoagulant therapy, re-evaluation of indications and risks resulted in a substantial number of treatment withdrawals. There have been major changes in treatment indications during the last decade, possibly due to rapid development of knowledge in the field of thrombosis risk factors. Treatment should be re-considered once a year

    Genome editing in food and feed production – implications for risk assessment. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............acceptedVersionpublishedVersio

    Genome editing in food and feed production – implications for risk assessment. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............publishedVersio

    Genome editing in food and feed production – implications for risk assessment. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    Source at https://vkm.no/I denne rapporten vurderer Vitenskapskomiteen for mat og miljø (VKM) utfordringer knyttet til helse- og miljørisikovurdering av genomredigerte organismer til mat- og fôrproduksjon. VKM har gått gjennom veiledningen for risikovurdering av genmodifiserte organismer (GMO) som Den europeiske myndighet for næringsmiddeltrygghet (EFSA) har utviklet, og vurdert om veiledningen også kan brukes til å vurdere risiko ved organismer som er utviklet ved genomredigering. VKM har selv tatt initiativ til denne rapporten.The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing

    Stroke : patient characteristics, efficacy of a stroke unit and evaluation of hemodilution therapy

    No full text
    Stroke is a major health problem in all developed countries. These studies, performed in a stroke unit at a medical department, were designed to characterize essential clinical features of the different cerebrovascular disorders on admission to hospital, to evaluate the efficacy of admitting unselected stroke patients to a stroke unit and, to evaluate hemodilution as a therapeutical regime in patients with cerebral infarction. A prospective registry included 409 patients admitted to the stroke unit over a five-year period. Modern diagnostic equipment (CT scan and CSF analyses) and strict diagnostic criteria revealed a diagnostic distribution of 11% hemorrhagic, 76% ischemic cerebrovascular lesions and 13% TIAs. Mean age varied between 65.8 and 77.5 years in the various diagnostic groups with the highest in patients with embolic cerebral infarctions. Concomitant disorders affecting the cardiovascular system were highly prevalent and only 14% was free of such diseases prior to the stroke. In a comparative prospective study, over 16 months, no differences were found between patients treated in the stroke unit (n = 110) and the general medical wards (n = 183) regarding prognostic indicators on admission such as age, concomitant disorders and neurological symptoms. The stroke patients treated in the stroke unit had a statistically significant better prognosis regarding functional outcome and the need for long-term hospitalization was reduced up to one year after the stroke when compared to patients treated in general medical wards. All stroke patients seemed to benefit with the possible exception of patients in coma on admission. These results were achieved within the same or shorter length of initial hospital stay for patients in the stroke unit. Neither overall mortality, nor mortality in subgroups of prognostic importance was significantly affected by the stroke unit regime. Rapid hemodilution in the early phase of cerebral infarction by the combination of venesection and administration of dextran 40 was evaluated in a prospective controlled trial. After randomization 52 hemodi- luted and 50 control patients were comparable in prognostic variables. Signs of blood-brain-barrier breakdown and hemorrhagic admixture to the cerebrospinal fluid in the acute phase were less frequent in hemodiluted subjects. The hemodi luted patients showed a significantly higher degree of early improvement and fewer progressions. Neurological and functional disability in survivors and need for long-term hospitalization was significantly reduced at 3 months and at one year after the stroke compared to controls. Mortality was not affected.digitalisering@um

    Riskinformation till cyklister

    No full text
    corecore