138 research outputs found

    A global analysis of associations between fine particle air pollution and cardiovascular risk factors: Feasibility study on data linkage

    Get PDF
    Background: This paper presents a feasibility study of data linkage between global air pollution data and clinical medical data to assess the associations of PM 2.5 with cardiovascular risk factors. Methods: Cardiovascular risk factor data were obtained from the SUrvey of Risk Factors (SURF) for coronary heart disease (CHD) patients from 10 countries in Europe, Asia, and the Middle-East. Annual average PM 2.5 concentrations were estimated using recent global WHO PM 2.5 maps combining satellite and surface monitoring data for the location of the 71 participating centers. Associations of PM 2.5 with risk factors were assessed by mixed-effect generalized estimation equation models adjusted by sex, age, exercise, body mass index, and smoking. In the final model there was further adjustment for country. Results: Linkage between cardiovascular risk factor data and PM 2.5 via the postal address of participating hospitals was shown to be feasible, however with several limitations noted.Eight thousand three hundred and ninety two patients (30% women) were included. Globally, an increase of 10 μg/m 3 in PM 2.5 was significantly associated with decreased BP and increased glucose. After controlling for country, an increase of 10 μg/m 3 in PM 2.5 was associated with decreased BP and increased LDL (SBP: -0.45 mmHg [95% CI: -0.85, -0.06]; DBP: -0.47 mmHg [-0.73, -0.20]; LDL: 0.04 mmol/L [0.01, 0.08]). The association with glucose attenuated (0.08 mmol/L [-0.23, 0.16]). Conclusion: It is feasible to link PM 2.5 and cardiovascular risk factors but it is still challenging to interpret these observed associations due to unavailability of potential confounders. After country adjustment, PM 2.5 was associated with small increases in LDL and small decreases in BP. Highlights: - There are limited studies on the association between air pollution and cardiovascular risk factors for patients with established coronary heart disease in low- and middle-income countries;- Data linkage is an efficient and cost-effective method to maximize the use of existing data to investigate more health related research questions;- It is feasible to determine global associations of air pollution and cardiovascular risk factors by data linkage but it is still challenging in terms of interpretation

    Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort: An ELAPSE study

    Get PDF
    BACKGROUND: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS: Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01-1.55), NO2 (1.13; 0.95-1.34 per 10 µg/m3), and BC (1.12; 0.94-1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58-0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5. CONCLUSION: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality

    Association between exposure to multiple air pollutants, transportation noise and cause-specific mortality in adults in Switzerland.

    Get PDF
    BACKGROUND: Long-term exposure to air pollution and noise is detrimental to health; but studies that evaluated both remain limited. This study explores associations with natural and cause-specific mortality for a range of air pollutants and transportation noise. METHODS: Over 4 million adults in Switzerland were followed from 2000 to 2014. Exposure to PM2.5, PM2.5 components (Cu, Fe, S and Zn), NO2, black carbon (BC) and ozone (O3) from European models, and transportation noise from source-specific Swiss models, were assigned at baseline home addresses. Cox proportional hazards models, adjusted for individual and area-level covariates, were used to evaluate associations with each exposure and death from natural, cardiovascular (CVD) or non-malignant respiratory disease. Analyses included single and two exposure models, and subset analysis to study lower exposure ranges. RESULTS: During follow-up, 661,534 individuals died of natural causes (36.6% CVD, 6.6% respiratory). All exposures including the PM2.5 components were associated with natural mortality, with hazard ratios (95% confidence intervals) of 1.026 (1.015, 1.038) per 5 µg/m3 PM2.5, 1.050 (1.041, 1.059) per 10 µg/m3 NO2, 1.057 (1.048, 1.067) per 0.5 × 10-5/m BC and 1.045 (1.040, 1.049) per 10 dB Lden total transportation noise. NO2, BC, Cu, Fe and noise were consistently associated with CVD and respiratory mortality, whereas PM2.5 was only associated with CVD mortality. Natural mortality associations persisted < 20 µg/m3 for PM2.5 and NO2, < 1.5 10-5/m BC and < 53 dB Lden total transportation noise. The O3 association was inverse for all outcomes. Including noise attenuated all outcome associations, though many remained significant. Across outcomes, noise was robust to adjustment to air pollutants (e.g. natural mortality 1.037 (1.033, 1.042) per 10 dB Lden total transportation noise, after including BC). CONCLUSION: Long-term exposure to air pollution and transportation noise in Switzerland contribute to premature mortality. Considering co-exposures revealed the importance of local traffic-related pollutants such as NO2, BC and transportation noise

    Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest.

    Get PDF
    We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 μm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally

    Long-Term Exposure to Low-Level PM2.5 and Mortality: Investigation of Heterogeneity by Harmonizing Analyses in Large Cohort Studies in Canada, United States, and Europe.

    Get PDF
    BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5μm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-μg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141

    Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort

    Get PDF
    Background The majority of studies have shown higher greenness exposure associated with reduced mortality risks, but few controlled for spatially correlated air pollution and traffic noise exposures. We aim to address this research gap in the ELAPSE pooled cohort. Methods Mean Normalized Difference Vegetation Index (NDVI) in a 300-m grid cell and 1-km radius were assigned to participants’ baseline home addresses as a measure of surrounding greenness exposure. We used Cox proportional hazards models to estimate the association of NDVI exposure with natural-cause and cause-specific mortality, adjusting for a number of potential confounders including socioeconomic status and lifestyle factors at individual and area-levels. We further assessed the associations between greenness exposure and mortality after adjusting for fine particulate matter (PM2.5), nitrogen dioxide (NO2) and road traffic noise. Results The pooled study population comprised 327,388 individuals who experienced 47,179 natural-cause deaths during 6,374,370 person-years of follow-up. The mean NDVI in the pooled cohort was 0.33 (SD 0.1) and 0.34 (SD 0.1) in the 300-m grid and 1-km buffer. In the main fully adjusted model, 0.1 unit increment of NDVI inside 300-m grid was associated with 5% lower risk of natural-cause mortality (Hazard Ratio (HR) 0.95 (95% CI: 0.94, 0.96)). The associations attenuated after adjustment for air pollution [HR (95% CI): 0.97 (0.96, 0.98) adjusted for PM2.5; 0.98 (0.96, 0.99) adjusted for NO2]. Additional adjustment for traffic noise hardly affected the associations. Consistent results were observed for NDVI within 1-km buffer. After adjustment for air pollution, NDVI was inversely associated with diabetes, respiratory and lung cancer mortality, yet with wider 95% confidence intervals. No association with cardiovascular mortality was found. Conclusions We found a significant inverse association between surrounding greenness and natural-cause mortality, which remained after adjusting for spatially correlated air pollution and traffic noise

    Long-term exposure to air pollution and mortality in a Danish nationwide administrative cohort study: Beyond mortality from cardiopulmonary disease and lung cancer.

    Get PDF
    BACKGROUND: The association between long-term exposure to air pollution and mortality from cardiorespiratory diseases is well established, yet the evidence for other diseases remains limited. OBJECTIVES: To examine the associations of long-term exposure to air pollution with mortality from diabetes, dementia, psychiatric disorders, chronic kidney disease (CKD), asthma, acute lower respiratory infection (ALRI), as well as mortality from all-natural and cardiorespiratory causes in the Danish nationwide administrative cohort. METHODS: We followed all residents aged ≥ 30 years (3,083,227) in Denmark from 1 January 2000 until 31 December 2017. Annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (warm season) were estimated using European-wide hybrid land-use regression models (100 m × 100 m) and assigned to baseline residential addresses. We used Cox proportional hazard models to evaluate the association between air pollution and mortality, accounting for demographic and socioeconomic factors. We additionally applied indirect adjustment for smoking and body mass index (BMI). RESULTS: During 47,023,454 person-years of follow-up, 803,881 people died from natural causes. Long-term exposure to PM2.5 (mean: 12.4 µg/m3), NO2 (20.3 µg/m3), and/or BC (1.0 × 10-5/m) was statistically significantly associated with all studied mortality outcomes except CKD. A 5 µg/m3 increase in PM2.5 was associated with higher mortality from all-natural causes (hazard ratio 1.11; 95% confidence interval 1.09-1.13), cardiovascular disease (1.09; 1.07-1.12), respiratory disease (1.11; 1.07-1.15), lung cancer (1.19; 1.15-1.24), diabetes (1.10; 1.04-1.16), dementia (1.05; 1.00-1.10), psychiatric disorders (1.38; 1.27-1.50), asthma (1.13; 0.94-1.36), and ALRI (1.14; 1.09-1.20). Associations with long-term exposure to ozone (mean: 80.2 µg/m3) were generally negative but became significantly positive for several endpoints in two-pollutant models. Generally, associations were attenuated but remained significant after indirect adjustment for smoking and BMI. CONCLUSION: Long-term exposure to PM2.5, NO2, and/or BC in Denmark were associated with mortality beyond cardiorespiratory diseases, including diabetes, dementia, psychiatric disorders, asthma, and ALRI

    Long-term exposure to several constituents and sources of PM 2.5 is associated with incidence of upper aerodigestive tract cancers but not gastric cancer: Results from the large pooled European cohort of the ELAPSE project.

    Get PDF
    It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM 2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO 2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion

    Long-term exposure to air pollution and incidence of gastric and the upper aerodigestive tract cancers in a pooled European cohort: The ELAPSE project

    Get PDF
    Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM 2.5 ), nitrogen dioxide (NO 2 ), black carbon (BC) and ozone in the warm season (O 3w ) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM 2.5 , NO 2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 μg/m 3 increase in PM 2.5 , 1.19 (1.08-1.30) per 10 μg/m 3 increase in NO 2 , 1.14 (1.04-1.26) per 0.5 × 10 -5  m -1 increase in BC and 0.81 (0.72-0.92) per 10 μg/m 3 increase in O 3w . We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM 2.5 , NO 2 and BC increased incidence of UADT cancer was observed

    Modeling multi-level survival data in multi-center epidemiological cohort studies: Applications from the ELAPSE project.

    Get PDF
    BACKGROUND: We evaluated methods for the analysis of multi-level survival data using a pooled dataset of 14 cohorts participating in the ELAPSE project investigating associations between residential exposure to low levels of air pollution (PM2.5 and NO2) and health (natural-cause mortality and cerebrovascular, coronary and lung cancer incidence). METHODS: We applied five approaches in a multivariable Cox model to account for the first level of clustering corresponding to cohort specification: (1) not accounting for the cohort or using (2) indicator variables, (3) strata, (4) a frailty term in frailty Cox models, (5) a random intercept under a mixed Cox, for cohort identification. We accounted for the second level of clustering due to common characteristics in the residential area by (1) a random intercept per small area or (2) applying variance correction. We assessed the stratified, frailty and mixed Cox approach through simulations under different scenarios for heterogeneity in the underlying hazards and the air pollution effects. RESULTS: Effect estimates were stable under approaches used to adjust for cohort but substantially differed when no adjustment was applied. Further adjustment for the small area grouping increased the effect estimates' standard errors. Simulations confirmed identical results between the stratified and frailty models. In ELAPSE we selected a stratified multivariable Cox model to account for between-cohort heterogeneity without adjustment for small area level, due to the small number of subjects and events in the latter. CONCLUSIONS: Our study supports the need to account for between-cohort heterogeneity in multi-center collaborations using pooled individual level data
    • …
    corecore