244 research outputs found

    Transient response of a thermoelectric generator to load steps under constant heat flux

    Get PDF
    Most waste heat recovery applications involve a heat source that provides a limited heat flux that can be converted into electricity by a thermoelectric generator (TEG). When a TEG is used under limited or constant heat flux conditions the temperature difference across the device cannot be considered constant and will change depending on the electrical current generated by the TEG. This phenomenon is induced by the Peltier effect, which works against power generation and deviates the optimum operating point from the commonly known maximum power point (MPP). This point, dictated by the maximum power transfer theorem, is achieved when the source equivalent series resistance and the load resistance are equal, in conditions of constant temperature difference. Hence maximum power point tracking (MPPT) algorithms that regulate the TEG at half of the instantaneous open-circuit voltage are optimized only for applications where the TEG operates under constant temperature difference but are not ideal for constant heat flux conditions. Hill climbing MPPT methods, e.g., perturb-and-observe (P&O) or incremental conductance (IC), can reach the MPP more accurately if the sampling time is extended to the thermal time constant of the system. This article presents an analysis of the transient electrical and thermal response of a TEG to a load change. This investigation results fundamental to the design of MPPT algorithms such P&O or IC for TEGs operating under constant heat flux. A step-up (boost) dc-dc converter controlled by P&O is used to demonstrate the effects of the sampling time over of the transient response and hence the tracking performance of the MPPT algorithm

    Magnitude Judgements Are Influenced by the Relative Positions of Data Points Within Axis Limits

    Get PDF
    When visualising data, chart designers have the freedom to choose the upper and lower limits of numerical axes. Axis limits can determine the physical characteristics of plotted values, such as the physical position of data points in dot plots. In two experiments (total N=300), we demonstrate that axis limits affect viewers' interpretations of the magnitudes of plotted values. Participants did not simply associate values presented at higher vertical positions with greater magnitudes. Instead, participants considered the relative positions of data points within the axis limits. Data points were considered to represent larger values when they were closer to the end of the axis associated with greater values, even when they were presented at the bottom of a chart. This provides further evidence of framing effects in the display of data, and offers insight into the cognitive mechanisms involved in assessing magnitude in data visualisations

    Attenuation of microvascular function in those with cardiovascular disease is similar in patients of Indian Asian and European descent

    Get PDF
    addresses: Institute of Biomedical and Clinical Science, Peninsula Medical School (Exeter), University of Exeter, UK. [email protected]: PMCID: PMC2823616types: Comparative Study; Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't© 2010 Strain et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Indian Asians are at increased risk of cardiovascular death which does not appear to be explained by conventional risk factors. As microvascular disease is also more prevalent in Indian Asians, and as it is thought to play a role in the development of macrovascular disease, we decided to determine whether impaired microcirculation could contribute to this increased cardiovascular risk in Indian Asians

    Local-Oscillator Noise Coupling in Balanced Homodyne Readout for Advanced Gravitational Wave Detectors

    Get PDF
    The second generation of interferometric gravitational wave detectors are quickly approaching their design sensitivity. For the first time these detectors will become limited by quantum back-action noise. Several back-action evasion techniques have been proposed to further increase the detector sensitivity. Since most proposals rely on a flexible readout of the full amplitude- and phase-quadrature space of the output light field, balanced homodyne detection is generally expected to replace the currently used DC readout. Up to now, little investigation has been undertaken into how balanced homodyne detection can be successfully transferred from its ubiquitous application in table-top quantum optics experiments to large-scale interferometers with suspended optics. Here we derive implementation requirements with respect to local oscillator noise couplings and highlight potential issues with the example of the Glasgow Sagnac Speed Meter experiment, as well as for a future upgrade to the Advanced LIGO detectors.Comment: 7 pages, 5 figure

    Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    Get PDF
    With the recent detection of Gravitational waves (GW), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWD) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum noise limited sensitivity is independent of the actual interferometer configuration, e.g. Michelson and Sagnac interferometers are effected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only effects the high frequency part of the quantum noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back action noise) by the same amount and hence the quantum noise limited sensitivity is not negatively effected in that frequency range. We show that the misalignment of laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof of concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the experiment

    Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Get PDF
    Low mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilising multiple pendulum stages with vertical blade springs and materials with high quality factors provides attenuation of seismic and thermal noise, however damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed but introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimisation for this system.Comment: 5 pages, 5 figure

    Is There a Relationship Between Bovine Tuberculosis (bTB) Herd Breakdown Risk and Mycobacterium avium subsp. paratuberculosis Status? An Investigation in bTB Chronically and Non-chronically Infected Herds

    Get PDF
    Publication history: Accepted - 23 January 2019; Published - 14 February 2019.Background: Bovine tuberculosis (bTB; Mycobacterium bovis) remains a significant problem in a number of countries, and is often found where M. avium subsp. paratuberculosis (MAP) is also present. In the United Kingdom, bTB has been difficult to eradicate despite long-term efforts. Co-infection has been proposed as one partial mechanism thwarting eradication. Methods: A retrospective case-control study of 4,500 cattle herds in Northern Ireland, where serological testing of cattle for MAP, was undertaken (2004–2015). Blood samples were ELISA tested for MAP; infection of M. bovis was identified in herds by the comparative tuberculin test (CTT) and through post-mortem evidence of infection. Case-herds were those experiencing a confirmed bTB breakdown; control-herds were not experiencing a breakdown episode at the time of MAP testing. A second model included additional testing data of feces samples (culture and PCR results) to better inform herd MAP status. Multi-level hierarchical models were developed, controlling for selected confounders. A sensitivity analysis of the effect of MAP sample numbers per event and the prior timing of tuberculin-testing was undertaken. Results: 45.2% (n = 250) of case observations and 36.0% (3,480) of control observations were positive to MAP by ELISA (45.8% and 36.4% when including ancillary fecal testing, respectively). Controlling for known confounders, the adjusted odds ratio (aOR) for this association was 1.339 (95%CI:1.085–1.652; including ancillary data aOR:1.356;95%CI:1.099–1.673). The size-effect of the association increased with the increasing number of samples per event used to assign herd MAP status (aOR:1.883 at >2 samples, to aOR:3.863 at >10 samples), however the estimated CI increased as N decreased. 41.7% of observations from chronic herds were MAP serology-positive and 32.2% from bTB free herds were MAP positive (aOR: 1.170; 95%ci: 0.481–2.849). Discussion: Cattle herds experiencing a bTB breakdown were associated with increased risk of having a positive MAP status. Chronic herds tended to exhibit higher risk of a positive MAP status than bTB free herds, however there was less support for this association when controlling for repeated measures and confounding. MAP co-infection may be playing a role in the success of bTB eradiation schemes, however further studies are required to understand the mechanisms and to definitively establish causation

    Is There a Relationship Between Bovine Tuberculosis (bTB) Herd Breakdown Risk and Mycobacterium avium subsp. paratuberculosis Status? An Investigation in bTB Chronically and Non-chronically Infected Herds

    Get PDF
    Background: Bovine tuberculosis (bTB; Mycobacterium bovis) remains a significant problem in a number of countries, and is often found where M. avium subsp. paratuberculosis (MAP) is also present. In the United Kingdom, bTB has been difficult to eradicate despite long-term efforts. Co-infection has been proposed as one partial mechanism thwarting eradication.Methods: A retrospective case-control study of 4,500 cattle herds in Northern Ireland, where serological testing of cattle for MAP, was undertaken (2004–2015). Blood samples were ELISA tested for MAP; infection of M. bovis was identified in herds by the comparative tuberculin test (CTT) and through post-mortem evidence of infection. Case-herds were those experiencing a confirmed bTB breakdown; control-herds were not experiencing a breakdown episode at the time of MAP testing. A second model included additional testing data of feces samples (culture and PCR results) to better inform herd MAP status. Multi-level hierarchical models were developed, controlling for selected confounders. A sensitivity analysis of the effect of MAP sample numbers per event and the prior timing of tuberculin-testing was undertaken.Results: 45.2% (n = 250) of case observations and 36.0% (3,480) of control observations were positive to MAP by ELISA (45.8% and 36.4% when including ancillary fecal testing, respectively). Controlling for known confounders, the adjusted odds ratio (aOR) for this association was 1.339 (95%CI:1.085–1.652; including ancillary data aOR:1.356;95%CI:1.099–1.673). The size-effect of the association increased with the increasing number of samples per event used to assign herd MAP status (aOR:1.883 at >2 samples, to aOR:3.863 at >10 samples), however the estimated CI increased as N decreased. 41.7% of observations from chronic herds were MAP serology-positive and 32.2% from bTB free herds were MAP positive (aOR: 1.170; 95%ci: 0.481–2.849).Discussion: Cattle herds experiencing a bTB breakdown were associated with increased risk of having a positive MAP status. Chronic herds tended to exhibit higher risk of a positive MAP status than bTB free herds, however there was less support for this association when controlling for repeated measures and confounding. MAP co-infection may be playing a role in the success of bTB eradiation schemes, however further studies are required to understand the mechanisms and to definitively establish causation

    A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function

    Get PDF
    Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function.</p
    • …
    corecore