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Magnitude Judgements Are Influenced by the Relative Positions of
Data Points Within Axis Limits

Duncan Bradley, Gabriel Strain, Caroline Jay, and Andrew J. Stewart

Abstract—When visualising data, chart designers have the freedom to choose the upper and lower limits of numerical axes. Axis limits
can determine the physical characteristics of plotted values, such as the physical position of data points in dot plots. In two experiments
(total N=300), we demonstrate that axis limits affect viewers’ interpretations of the magnitudes of plotted values. Participants did not
simply associate values presented at higher vertical positions with greater magnitudes. Instead, participants considered the relative
positions of data points within the axis limits. Data points were considered to represent larger values when they were closer to the end
of the axis associated with greater values, even when they were presented at the bottom of a chart. This provides further evidence
of framing effects in the display of data, and offers insight into the cognitive mechanisms involved in assessing magnitude in data
visualisations.

Index Terms—Magnitude, Axis Manipulation, Cognition, Bias, Framing Effects

1 INTRODUCTION

Context is crucial for effectively judging the magnitude of numbers. A
10% probability is twice as great as a 5% probability, but in the absence
of context, it is unclear whether this value should be considered large
or small. When referring to the chance of losing one’s job, a 10%
probability may be considered large, but when referring to the chance
of losing a sports bet, a 10% probability may be considered small.

Contextual cues may influence interpretation of magnitude in data
visualisations. One such cue is a chart’s axis limits, which can serve
as a frame of reference for assessing whether a data point represents
a large or small number. Figure 1 (a reproduction of a similar bar
chart from the New York Times), which plots over time the number
of Black members of the U.S. senate, provides a striking illustration.
Unusually, the y-axis does not terminate just above the highest plotted
value. Instead, the y-axis extends all the way to the maximum possible
number of senators: 100. As a result, bars representing Black senators
are confined to the very bottom, visible just above the x-axis, and a
significant expanse of blank space looms above them. This framing
situates plotted data points in their numerical context, thus conveying a
small magnitude.

It is unclear exactly how a viewer’s inferences about magnitude
might be influenced by axis limits. Different axis limits present data
points at different positions, so one possible explanation is that viewers
interpret the magnitude of data points at higher positions as ‘high’ and
those at lower positions as ‘low’. Alternatively, axis limits may provide
context: magnitudes may be judged as small when the potential for
larger values is clearly displayed. The present pair of experiments
demonstrates the influence of axis limits on viewers’ interpretations
and explores which of these two accounts best explains how axis limits
contribute to the communication of magnitude.
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Overview In two experiments, we manipulated the axis limits
surrounding plotted data. This affected the physical positions of data
points, but also the relative positions of data points within axis limits:
their proximity to the highest and lowest axis values. Likert scale ratings
of the magnitude of data points were higher when data points were
positioned close to the end of the axis which was associated with higher
numbers. By employing charts with conventional and inverted y-axis
orientations to distinguish between possible explanations, we reveal
that magnitude judgements are influenced by the relative positions of
data points within axis limits.

Data, analysis code, experimental scripts, materials, and interac-
tive versions of the experiments are available at https://osf.io/3epm2/.
We also provide all necessary resources for running a Docker con-
tainer, within which the computational environment used for analysis
is recreated, meaning a fully-reproducible version of this paper can be
generated.

Contributions

1. We provide empirical evidence demonstrating that axis limits
influence interpretations of absolute magnitude in dot plot visual-
isations.

2. We explore the underlying cognitive mechanism by manipulating
axis orientations. This reveals that this effect is primarily driven
by the relative position of data points within axis limits.

3. We present the communication of absolute magnitude as an addi-
tional consideration for data visualisation designers.

2 RELATED WORK

2.1 Effects of Axis Limits on Interpretations of Relative
Differences

Several studies have explored the role of axis limits in data visuali-
sation. Research has typically focused on how axis limits can alter
impressions of the difference between presented values. For example,
when axis ranges are expanded to create blank space around a cluster of
data points, correlation between those points is judged as stronger [7].
Participants also rate the differences between values in bar charts as
greater when the vertical gap between bars is larger due to a truncated
y-axis [21].

Correll et al.’s [8] experiments found that greater y-axis truncation
resulted in higher effect-size judgements in both line charts and bar
charts. They found no reduction in effect size judgements when trunca-
tion was communicated using graphical techniques (e.g., axis breaks
and gradients). Truncation effects also persisted even when participants
estimated the values of specific data points. This suggests the bias is
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driven by initial impressions, rather than by a misinterpretation of the
values portrayed by graphical markings. This bias resembles a framing
effect, wherein the same information is interpreted differently according
to the perspective induced by aspects of its presentation [28]. The un-
avoidable consequence, Correll et al. suggest, is that designers’ choices
will influence viewers’ interpretations whether axes are truncated or
not.

Choosing appropriate axis limits involves a trade-off between par-
ticipants’ bias (reliance on the visual appearance of differences) and
their sensitivity (capacity to identify actual differences) [31]. Just as
a highly truncated y-axis can exaggerate trivial differences between
values, an axis spanning the entire range of possible values can conceal
important differences. Based on participants’ judgements of effect size,
Witt [31] found that bias was reduced and sensitivity increased when
using an axis range of approximately 1.5 standard deviations of the
plotted data, compared to axes which spanned only the range of the
data, or the full range of possible values. This provides further evidence
of a powerful association between the appearance of data, when plotted,
and subjective interpretations of differences between data points.

Further evidence of truncation effects, provided by Yang et al. [34]
improves on the design of previous studies which employed only a
few observations per condition [21] or small sample sizes [31]. Partici-
pants’ ratings of the difference between two bars consistently provided
evidence of the exaggerating effects of y-axis truncation. Yang et al.
[34] noted that increasing awareness of this bias does not eliminate
this effect, which may function like an anchoring effect, in which nu-
merical judgements are influenced by reference points [27]. Another
potential explanation discussed by Yang et al. [34] draws upon Grice’s
co-operative principle [12]. According to this account of effective com-
munication, speakers are assumed to be in cooperation, and so will
communicate in a manner that is informative, truthful, relevant, and
straightforward. Analogously, a viewer will assume that a numerical
difference in a chart must be genuinely large if it appears large, else it
would not be presented that way. Effective visualisations should be de-
signed so a viewer’s instinctive characterisation of the data corresponds
closely to their interpretation following a more detailed inspection [34].

The above research consistently demonstrates that the magnitude of
the difference between values is interpreted differently depending on the
axis limits employed. This helps explain how viewers compare values
within a graph. However, little attention has been paid to a different
type of judgement: how are interpretations of the values themselves
(not simply the differences between them) affected by axis limits? The
present investigation explores this question by analysing responses to
pairs of charts which display the same data using different axis limits.
In the following section, we discuss existing work on judgements of
absolute magnitude in data visualisations, and discuss how our work
expands upon these prior investigations.

2.2 Effects of Axis Limits on Interpretations of Absolute
Magnitude

Empirical evidence demonstrates that judgement of a value’s magni-
tude can depend on its relationship to a grand total or to surrounding
values. This can influence interpretation of verbal approximations and
numerical values. For example, participants instructed to take ‘a few’
marbles picked up more when the total number available was larger [3]
and rated satisfaction with the same salary as higher when it appeared
in the upper end of a range, compared to the lower end [4]. As well
as context, vertical position also plays a role in magnitude judgements.
For example, children appear to intuitively understand the relationship
between height and value [10]. Both the physical world, and language
(e.g., spatial metaphors), provide countless examples where ‘higher’ is
associated with ‘more’, and ‘lower’ with ‘less’, and this principle has
been adopted as a convention in data visualisation [29].

In charts, inversions of the typical mapping between magnitude
and vertical position charts can lead to misinterpretations [19, 21, 33].
Furthermore, when a company’s financial performance was displayed
entirely in the bottom fifth of a line chart, the company was perceived
as less successful, compared to when the axis did not extend above the
maximum value [26]. Sandman et al. [25] investigated assessments of
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Fig. 1. A reproduction of a bar chart from the New York Times. The
y-axis limit is defined by the largest possible value, rather than the largest
observed value, thus the magnitude of plotted values appears particularly
small.

magnitude in risk ladders, where greater risks are presented at higher
positions on a vertical scale. Participants rated asbestos exposure as a
greater threat when it was plotted at a higher position, compared to a
lower position.

The above findings can be regarded as preliminary evidence that
changing axis limits may affect appraisals of the magnitude of data
points. However, the evidence is not substantial. Taylor and Anderson
[26] did not disclose how judgements were elicited, or provide details
of their sample size. Sandman et al. [25] only explored responses to
one specific risk (asbestos), and each participant only took part in a
single trial. The perceived threat measure was a composite of sev-
eral separate ratings, preventing diagnosis of whether manipulations
affected interpretations of the plotted information in particular, or just
related concepts. Further, both studies introduced a confounding vari-
able by adjusting the difference between the minimum and maximum
y-axis values across conditions. Stronger evidence is required regarding
how axis limits may bias inferences about absolute magnitude, and the
cognitive mechanisms involved in generating these inferences.

2.3 Judgements of Event Outcomes

In the present study, participants viewed charts showing fictitious data
on the chance of particular events occurring. This provided participants
with a purpose; evaluating information about event outcomes is a more
meaningful task than assessing how ‘large’ an abstract value is. Each
value was represented using a single dot on a percentage probability
scale. Our use of dot plots for conveying percentages was motivated by
their simplicity and use of a single encoding channel (position), thus
avoiding confounding variables from other encoding channels.

Presenting data about events with negative consequences warranted
consideration of the cognitive processing of this information. These
events are composed of two core components: 1) chance of occurrence
and 2) severity of outcomes. Assessments of chance and severity are not
necessarily independent. Events are perceived as more likely when they
are described as having more severe consequences [13, 14]. In a similar
manner, events are associated with more substantial consequences when
they are described as more likely [17].

One account suggests that perceptions of probability and outcome
magnitude are related because they are both assumed to reflect the
potency of the event’s cause. This is known as the probability-outcome
correspondence principle [16]. According to this account, probabilities
can occasionally provide meaningful indications of severity (e.g., rain-
fall), but it is inappropriate to apply this perspective to all situations
(e.g., volcanic eruptions). Therefore, even though charts in the present
study only display the chance of events occurring, assessments of the
severity of events’ consequences may also differ between conditions.
Collecting separate judgements of chance and severity of consequences
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provides a clearer picture of how the manipulation affects distinct as-
pects of participants’ representations. Our use of Likert scales forces
participants to choose from a limited number of options, thus help-
ing capture their gist-level interpretations of information, rather than
verbatim representations [24].

2.4 Data Visualisation Literacy
When faced with charts that violate graphical conventions by using
atypical scales, individuals with low data visualisation literacy are more
likely to draw on the physical positions of data points when making
inferences about their magnitudes [19, 20]. We administered Garcia-
Retamero et al.’s [9] subjective graph literacy measure to determine
whether responses to our manipulation of axis limits were associated
with data visualisation literacy.

3 EXPERIMENTS

We conducted two experiments manipulating y-axis limits in visualisa-
tions of fictitious data. This manipulation altered the physical positions
of data points in a chart, but crucially the numerical values themselves
remained the same.

Experiment 1 sought to establish whether y-axis limits affected
magnitude judgements. To provide context for participants, text accom-
panying the charts outlined (fictitious) scenarios involving a specific
negative outcome (e.g., loss on financial investment, delayed flights,
etc.). Three plotted data points in each chart represented the chance
of the negative outcome occurring (%) for three instances associated
with the scenario (e.g., three investment opportunities, three airlines,
etc.). Participants rated the chance of events occurring (indicating their
interpretation of the magnitude of plotted data points) and also the
severity of consequences.

Experiment 2 used the same y-axis manipulation as Experiment 1,
but in charts with inverted y-axis orientations, where data points at
lower physical positions represented greater values. This allowed us to
investigate whether magnitude judgements were driven by the physical
positions of data points, or their relative positions within the context
of the axis limits. Importantly, the use of inverted charts should not be
considered an endorsement (see issues above). However, they serve to
distinguish between two possible explanations, since they reverse the
typical associations between physical position and magnitude.

Ethical approval was granted by The University of Manchester’s
Division of Neuroscience & Experimental Psychology Ethics Com-
mittee (Experiment 1: Ref 2021-11115-18258; Experiment 2: Ref.
2021-11115-20745). Data, analysis code, experimental scripts, ma-
terials, and interactive versions of the experiments are available at
https://osf.io/3epm2/.

3.1 Experiment 1
3.1.1 Method

Materials

Datasets For each dataset, we generated three values from a
normal distribution. Population means were specified manually in order
to represent plausible values for the probability of the event occurring
(28% - 72%). All datasets had a population standard deviation of 0.5.
The same dataset was employed for both of the experimental conditions
associated with a given event scenario.

Charts Datasets were displayed using dot plots. In experimental
trials (n = 40), upper and lower axis limits were manipulated such that
data points either appeared in the top third of the chart (high physical
position: Figure 2, left) or in the bottom third (low physical position:
Figure 2, right).

The y-axis range in each chart was 10 percentage points. Horizontal
gridlines appeared at one-unit increments. The horizontal gridlines 1.5
units from the extremes were labelled with numerical values.

Filler trials (n = 15) and attention check trials (n = 5, two questions
per trial) presented data points in the middle third of the chart. Filler

Fig. 2. Example charts, taken from Experiment 1. The high physical
position condition (left) presents data points near the top of the chart;
the low physical position condition (right) presents the same data points
near the bottom of the chart.

trials employed this additional variation to prevent participants from
identifying the purpose of the study.

Procedure The experiment was programmed in PsychoPy (ver-
sion 2021.1.4, [22]) and hosted on pavlovia.org. Participants were
instructed to complete the experiment on a desktop computer or laptop,
not a tablet or mobile phone. Instructions explained that their task
involved assessing the chance and severity of negative outcomes in
various scenarios involving risks and noted that some scenarios might
appear similar to other scenarios. Participants were asked to complete
the task as quickly and accurately as possible. Two practice trials
preceded the experiment proper.

An example of a single trial is shown in Figure 3. Participants pro-
vided two responses in each trial: a rating of the chance of the negative
event occurring; and a rating of the severity of the consequences should
that negative event occur. Both 7-point Likert scales had anchors at their
extremes: ‘Very unlikely’ and ‘Very likely’ for the ‘chance’ scale, and

‘Very mild’ to ‘Very severe’ for the ‘severity’ scale. All other response
categories were unlabelled. Accompanying text specified that answers
should be given in response to the plotted data (e.g., “If you camp on
one of these days. . . ”). The term ‘chance’ was used instead of ‘proba-
bility’ to avoid confusion with the standard 0-1 scale for probabilities,
and to reflect casual usage.

Participants could change their responses as many times as they
wished before proceeding to the next trial, but could not return to
previous trials. In attention check trials, participants were instructed
not to attend to the chart, and instead to provide specified responses on
each of the two Likert scales.

Before exiting the experiment, participants were informed that all
data presented were fictitious and guidance was provided in case of
distress.

Design We employed a repeated-measures, within-participants
design. Participants encountered scenarios from experimental trials
twice: once with data presented at a high physical position and once
with data presented at a low physical position.

Materials were divided into two lists to minimise the likelihood that
different versions of the same scenario appeared in close succession.
One list contained half of the high-condition items and half of the
low-condition items for the experimental scenarios. The other list
contained the alternate versions of each of these experimental scenarios.
Fillers and attention check questions were split between the two lists,
and did not appear more than once. The order of the two lists was
counterbalanced across participants. Within each list, scenarios were
presented in a random order.

Participants The experiments were advertised on Prolific.co, a
platform for recruiting participants for online studies. Normal or
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Fig. 3. An example trial, taken from Experiment 1. Participants provided
two ratings in each trial: the chance of an event occurring (magnitude
rating), and the severity of consequences should the event occur (severity
rating).

corrected-to-normal vision and English fluency were required for par-
ticipation.

We planned to recruit 150 participants. Ten additional participants
were excluded for answering more than two of 10 attention check
questions incorrectly. The remaining 150 submissions were used in the
analysis: (52.00% male, 45.33% female, 2.67% non-binary). Mean age
was 31.49 (SD = 12.47)1. The mean data visualisation literacy score
was 21.28 (SD = 4.58), out of a maximum of 30. Participants whose
submissions were approved were paid £3.55. Average completion time
was 25 minutes 2.

3.2 Analysis Technique

Analyses were conducted using R [version 4.2.1, 23].
Likert scales express granularity at the level of ordinal data. They

record whether one rating is higher or lower than another, but not the
extent of this difference. Therefore, Likert scales do not necessarily
capture values from latent distributions (mental representations) in a
linear manner. The distance between one pair of points and another pair
may appear equal, but may represent different distances on the latent
distribution. Therefore, it is inappropriate to analyse Likert scale data
with metric models, such as linear regression [18]. Throughout this
paper, we construct cumulative link mixed-effects models, using the
ordinal package [version 2019.12-10, 6] to analyse Likert scale ratings.
Odds ratio effect sizes were converted to Cohen’s d values using the
effectsize package [version 0.8.3, 2].

Selection of model random effects structures was automated using
the buildmer package in R [version 2.8, 30]. The maximal random
effects structure included random intercepts for participants and sce-
narios, plus corresponding slopes for the position variable [1]. The
buildmer package initially identified the most complex model which
could successfully converge. It subsequently removed terms which did
not contribute substantially to explaining variance in ratings.

3.3 Results

3.3.1 Magnitude Ratings

Figure 4 plots the distribution of magnitude ratings. Values presented
at high physical positions elicited a greater proportion of responses at
the higher end of the rating scale than values presented at low physical
positions.

A likelihood ratio test reveals that a model including physical posi-
tion as a fixed effect explains significantly more variability in ratings
than a model which does not include physical position as a fixed effect:
χ2(1) = 74.21, p < .001. Data points’ magnitudes were rated as greater

1Age data were unavailable for one participant.
2Timing data were unavailable for two participants.

when those data points were presented at high physical positions, com-
pared to when the same data points were presented at low physical
positions (z = 8.57, p < .001).

The odds ratio for the difference between conditions is 1.61, 95% CI
[1.44, 1.79]. Participants were 1.61 times more likely to respond with a
higher magnitude rating to data points presented at high positions than
data points presented at low positions. This is equivalent to a Cohen’s
d value of 0.26, a small effect size.

This model included random intercepts for each participant and each
scenario.

3.3.2 Severity Ratings

For ratings of the severity of consequences, a likelihood ratio test re-
veals that a model including physical position as a fixed effect explains
significantly more variability in ratings than a model which does not
include condition as a fixed effect: χ2(1) = 6.16, p = .013. The severity
of consequences was rated as greater when data points representing the
chance of an event occurring were presented at high physical positions,
compared to when the same data points were presented at low physical
positions (z = 2.50, p = .012).

The odds ratio for the difference between conditions is 1.21, 95% CI
[1.04, 1.41]. Participants were 1.21 times more likely to respond with
a higher severity rating to data points presented at high positions than
data points presented at low positions. This is equivalent to a Cohen’s
d value of 0.11, a very small effect size.

This model employed random intercepts for each scenario, plus
random intercepts and slopes for each participant. The slopes modelled,
for each participant, the average difference between responses to data
presented at different positions.

3.3.3 Data Visualisation Literacy

Adjusting for participants’ data visualisation literacy scores did not
eliminate the effect of the position of data points on ratings of magni-
tude (z = 8.57, p < .001, odds ratio = 1.61, 95% CI [1.44, 1.79]) or the
severity of consequences (z = 2.51, p = .012, odds ratio = 1.21, 95% CI
[1.04, 1.41]). These models were identical to the above models except
for the inclusion of subjective data visualisation literacy scores as an
additional fixed effect.

However, further analysis found that, for magnitude ratings, there
was an interaction between physical position and data visualisation
literacy: z = 4.46, p < .001, odds ratio = 0.95, 95% CI [0.92, 0.97]. The
difference between the literacy trends for data points presented at high
and low positions was -0.05, indicating that this difference decreased as
data visualisation literacy increased. This interaction is equivalent to a
Cohen’s d value of 0.03, a very small effect size. This model employed
random intercepts for scenarios with random slopes for literacy, plus
random intercepts for participants.

For ratings of the severity of consequences, there was no significant
interaction between physical position and data visualisation literacy:
z = 1.88, p = .061, odds ratio = 0.97, 95% CI [0.94, 1.00]. This is
equivalent to a Cohen’s d value of 0.02, a very small effect size. This
model employed random intercepts for participants with random slopes
for position, plus random intercepts for scenarios with random slopes
for literacy.

3.4 Discussion

This experiment demonstrates that axis limits, which determine the
position of plotted values, influence inferences about the magnitude
of data points. Participants rated the same values as greater when
these values were plotted at high positions, compared to low positions.
This difference is associated with a small effect size. Higher data
visualisation literacy levels were associated with a reduced effect, but
accounting for data visualisation did not eliminate this effect.

Even though the charts only displayed data on the chance of negative
outcomes occurring, ratings of severity of consequences were also
greater when data points were presented at high positions. The effect on
severity ratings was not associated with differences in data visualisation
literacy.
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Fig. 4. The distribution of Likert scale ratings of the magnitude of data points, shown separately for charts with conventional axes (Experiment
1) and charts with inverted axes (Experiment 2). The width of each response option represents the proportion of ratings recorded for that option.
In Experiment 1, data points presented at high physical positions (top) elicited a larger proportion of ratings on the right-hand side (representing
greater magnitudes), compared to data points at low physical positions (bottom), which elicited a larger proportion of ratings on the left-hand side
(representing smaller magnitudes). In Experiment 2, this pattern was reversed, with data points at low physical positions (bottom), which elicited a
larger proportion of ratings on the right-hand side (representing greater magnitudes).

4 EXPERIMENT 2

4.1 Introduction

Experiment 1 (E1) found that participants associated data points with
greater magnitudes when those data points were positioned near the
top of a chart, compared to when the same data points were positioned
near the bottom of a chart.

One possible explanation for this finding is that participants made
simple associations between physical position and magnitude, equating
physically higher data points with larger magnitudes and physically
lower data points with smaller magnitudes. This is congruent with
well-established conceptual metaphors for magnitude, where greater
vertical positions denote greater magnitudes [29].

An alternative explanation is that participants used the y-axis as a
frame of reference for assessing the magnitude of plotted values. For
example, when considering data points near the bottom of the axis,
participants may have recognised the potential for values larger than
those observed, consequently associating plotted values with smaller
magnitudes.

Experiment 1 does not provide a means of differentiating these com-
peting explanations. Drawing inferences from the physical positions
of data points would bias magnitude judgements in the same direction
as drawing inferences from their relative position within axis limits. A
high magnitude is implied by a data point’s high physical position and
its superior position in the context other of presented values. Therefore,
an additional experiment is required in order to distinguish between the
two competing explanations.

Plotting numerical values along the x-axis would not assist in an-
swering this question, since values that are large in the context of the
x-axis limits would be positioned on the right-hand side, which is also
typically associated with larger magnitudes [32]. However, inverting a
vertical axis changes the typical relationship between physical position
and numerical value: increasingly lower positions represent increas-
ingly higher numerical values. This means data points presented near
the bottom of a chart are numerically larger than the accompanying
y-axis values. Therefore, inferences invoking relative position would

bias magnitude judgements in the opposite direction compared to infer-
ences invoking the physical positions of data points. This is illustrated
in Figure 5. In Experiment 2, we manipulate the physical positions of
data points by changing axis limits (as in Experiment 1), but employ
inverted y-axes.

Previous research suggests that charts with inverted axes can be
prone to misinterpretation when viewers are not informed about the
inversion [21, 33]. Therefore, we provided explicit instruction to ensure
participants were aware that inverted charts were presented.

4.2 Method
4.2.1 Materials
Materials were identical to E1, except for the inversion of the y-axis in
all charts, including practice trials.

4.2.2 Procedure
The experiment used PsychoPy version 2021.2.3. One slide in the
instructions explained to participants how charts with inverted axes
function: “In all graphs in this experiment, the arrow on the ‘Chance’
axis points downwards, meaning the numbers get bigger as the axis
goes down.”. Otherwise, the procedure was identical to E1.

4.2.3 Design
As in E1, we employed a repeated-measures, within-participants design.

4.2.4 Participants
A viral social media post on 24th July 2021 endorsing the Prolific.co
platform attracted many new users from a narrow demographic, heavily
skewing the distribution of participants [5]. Therefore, the experiment
was not advertised to users who signed-up to Prolific.co after 24th July
2021, or to those who had participated in E1.

We planned to recruit 150 participants. Eleven additional partic-
ipants were excluded because they answered more than two of 10
attention check questions incorrectly (10 participants) or because they
exceeded the maximum completion time (87 minutes; one participant).
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Fig. 5. Rationale for Experiment 2: distinguishing the roles of physical
position and relative position. In charts with conventional axis orientations
(left column), there is congruence between data points’ physical positions
and their relative positions within axis limits. In charts with inverted axis
orientations (right column), there is incongruence between data points’
physical positions and their relative positions within axis limits. This
allows us to examine which cue informs magnitude judgements.

The remaining 150 submissions were used in the analysis: (60.00%
male, 40.00% female). Mean age was 29.64 (SD = 9.56)3. 100% had
completed at least secondary education. The mean data visualisation
literacy score was 21.87 (SD = 4.28). Participants whose submissions
were approved were paid £3.45, and average completion time was 24
minutes.

4.3 Analysis
We used the same analysis methods as in Experiment 1.

4.4 Results
4.4.1 Magnitude Ratings

Figure 4 plots the distribution of magnitude ratings. Values presented
at low physical positions elicited a greater proportion of responses at
the higher end of the rating scale than values presented at high physical
positions.

A likelihood ratio test reveals that a model including physical posi-
tion as a fixed effect explains significantly more variability in ratings
than a model which does not include physical position as a fixed effect
(χ2(1) = 46.45, p < .001). Data points’ magnitudes were rated as
larger when those data points were presented at low physical positions,
compared to when the same data points were presented at high physical
positions, in contrast to the findings in Experiment 1 (z = 6.80, p <
.001).

The odds ratio for the difference between conditions is 1.39, 95% CI
[1.27, 1.53]). Participants were 1.39 times more likely to respond with
a higher magnitude rating to data points presented at low positions than
data points presented at high positions. This is equivalent to a Cohen’s
d value of 0.18, a very small effect size.

This model employed random intercepts for each scenario.

4.4.2 Severity Ratings

For ratings of the severity of consequences, a likelihood ratio test
reveals that a model including physical position as a fixed effect did not
explain significantly more variability in ratings than a model without
physical condition as a fixed effect: (χ2(1) = 3.40, p = .065). The odds

3Age data were unavailable for two participants.

ratio for the difference between conditions is 1.13, 95% CI [0.99, 1.28]).
This is equivalent to a Cohen’s d value of 0.07, a very small effect size.

This model employed random intercepts for each scenario, plus
random intercepts for each participant with random slopes for position.

4.4.3 Data Visualisation Literacy

Adjusting for participants’ data visualisation literacy scores did not
change the pattern of results regarding ratings of the magnitude of data
points themselves (z = 7.51, p < .001, odds ratio = 0.68, 95% CI [0.61,
0.75]) or the severity of consequences (z = 1.85, p = .064, odds ratio =
1.13, 95% CI [0.99, 1.28]).

For magnitude ratings, there was an interaction between data visu-
alisation literacy and physical position: z = 2.12, p = .034, odds ratio
= 1.02, 95% CI [1.00, 1.05]. This is equivalent to a Cohen’s d value
of 0.01, a very small effect size. The difference between the literacy
trends for data points presented at low and high positions was -0.02,
indicating that this difference decreased as data visualisation literacy
increased. This interaction is equivalent to a Cohen’s d value of 0.01,
a very small effect size. This model employed random intercepts for
scenarios with slopes for literacy.

For ratings of the severity of consequences, there was no significant
interaction between physical position and data visualisation literacy:
z = 0.70, p = .485, odds ratio = 1.01, 95% CI [0.98, 1.04]. This
is equivalent to a Cohen’s d value of 0.01, a very small effect size.
This model employed random intercepts for scenarios with slopes for
literacy, plus random intercepts for participants with slopes for position.

4.5 Discussion

This experiment demonstrates that inferences about the magnitude of
data points are informed primarily by their relative positions within axis
limits, as opposed to their physical positions. Viewing data in charts
with inverted y-axes, participants rated the same values as greater when
these values were plotted at low physical positions, compared to high
physical positions. Ratings reflecting higher magnitudes were awarded
more frequently to charts where data points were positioned near the
bottom, where the axis limit was associated with a higher numerical
value. Therefore, axis limits inform judgements primarily through
inferences about the numerical context surrounding data points, rather
than the connotations of their physical positions.

Ratings of the severity of consequences were not significantly af-
fected by the position of data points representing the chance of negative
events occurring. Overall, accounting for differences in data visu-
alisation literacy did not alter the pattern of results, but higher data
visualisation literacy scores were associated with a diminished effect
of physical position, for magnitude ratings.

5 GENERAL DISCUSSION

Given the use of data visualisation for the communication of numerical
information, understanding how design choices affect interpretations
is an important matter. In a pair of experiments, we demonstrate
that judgements of the magnitudes of data points are influenced by a
chart’s axis limits. These experiments provide insight into the cognitive
processes involved in assessing magnitudes in data visualisations.

We manipulated the axis limits accompanying plotted data, which
affected the context in which data appeared and the physical positions
of data points. However, regardless of their physical positions, data
points were consistently associated with greater magnitudes when they
appeared close to the end of the axis associated with higher values.
Interpretation of the same numerical value is biased by its relative
position within axis limits. This highlights viewers’ sensitivity to
surrounding information when assessing data. We illustrate that this
framing effect occurs even when no contrasting data points are present
to provide context: axis limits are sufficient for informing magnitude
judgements. Therefore, charts which aim to communicate absolute
magnitude, like the New York Times example discussed above Figure 1,
may do so by employing axes which contextualise the magnitude of
data points through axis limits.
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Our findings suggest that axis limits influence, but do not wholly
dictate, impressions of magnitude. The distribution of magnitude judge-
ments across scenarios approximately followed the distribution of plot-
ted numerical values, suggesting that numerical values also contributed
to magnitude judgements. In addition, the effect size associated with
the physical positions of data points was larger for charts with conven-
tional axis orientations, compared to charts with inverted y-axes. This
suggests that the physical position of data points partially contributed to
participants’ assessments. Despite this, it is evident from the pattern of
results for inverted charts that relative position exerts a greater influence
on magnitude judgements. Whilst we cannot conclude that viewers
interpret the axis range as the complete context for assessing plotted
data, it is clear that axes primarily inform magnitude judgements by
defining the relative positions of data points.

5.1 Relationship to Prior Work
The present data complement findings from research on y-axis trunca-
tion, which has observed that axis limits accompanying plotted values
can influence viewers’ impressions of those values. While previous
investigations have shown that y-axis limits affect judgements of the
relative difference between plotted values [8, 21, 31, 34], the present
findings show that they also influence judgements of the absolute mag-
nitude of plotted values. This finding supports the notion that viewers
are sensitive to visualisation rhetoric [15] and framing effects [28],
wherein particular presentations of numerical information provokes
specific interpretations.

A previous study addressing a similar question also concluded that
a data point’s location within a range of values affects interpretation
of its magnitude [25]. The present study builds upon this research
by identifying the mechanism behind this effect and removing the
confound of variable axes ranges. It also extends the finding beyond a
single scenario (asbestos) to a wider range of situations. By analysing
different types of judgement separately, rather than using a combined
measure, we verify that axis limits affect interpretations of the specific
variable displayed in a chart, but not related variables (e.g., severity).

In addition to the conceptual metaphor for magnitude, physical
positions are also linked to emotional valence, with high positions
typically associated with positive valence. Woodin et al. [33] found that
physical arrangements of data which are consistent with the conceptual
metaphor for valence somewhat facilitate comprehension, but that
associations between position and magnitude affect interpretations
more strongly. Visualisations in the present experiments displayed data
on negative events, so data were aligned with the conceptual metaphor
for valence in inverted charts, and misaligned in conventional charts.
Participants evidently did not use valence metaphors to interpret values
in conventional charts; this would have produced the opposite pattern
of results to those observed. For inverted charts, we cannot differentiate
between responses based on relative position and responses based on a
conceptual metaphor for valence. However, the simplest explanation
for our results suggests that participants relied on the same relative
position cue when interpreting both conventional and inverted charts.

5.2 Additional Findings
Prior research has observed positive correlations between perceptions of
event probability and outcome magnitude [13, 14, 17]. We did not find
robust evidence that assessments of the severity of consequences were
affected by our manipulation of data points representing the chance of
events occurring. However, whereas prior work substantially manipu-
lated underlying scenarios, our subtler manipulation retained the same
probability values, changing only the surrounding context. In addition,
participants evaluated the severity of an event’s consequences, which
is one step removed from the property explored in prior research: the
severity of the event itself. The effects of axis limits on interpretation of
data about the incidence of events do not reliably extend to judgements
about their consequences.

Adjusting for subjective data visualisation literacy did not change
the overall pattern of results in either of the experiments. This indicates
that any biases observed cannot be fully explained by differences in
data visualisation literacy. Despite observing that bias reduced as data

visualisation literacy increased, the effect sizes associated with these in-
teractions were very small. Thus, the data visualisation literacy measure
provided low explanatory power. Yang et al. [34] also observed that
data visualisation literacy could not sufficiently explain variance in the
degree of bias caused by y-axis truncation. This measure reflects com-
prehension of the conventions of data visualisation, indicating receipt
of elementary instruction [20]. Therefore, it is perhaps better suited
for capturing viewers’ application of basic knowledge in interpretation
[34], whereas Ge et al.’s CALVI test [11] may be more appropriate for
predicting susceptibility to differences in presentation format.

5.3 Limitations and Future Directions

We employed inverted y-axes solely for the purpose of distinguishing
competing explanations; their use should not be considered an endorse-
ment. To avoid misinterpretations, participants were given instruction
on how to read inverted charts. With this explicit instruction, our data
provide evidence contrary to the typical finding of misinterpretation
resulting from associating higher positions with higher values [21, 33].
However, this instruction may have suppressed a spontaneous interpre-
tation of magnitude, based on physical position, in favour of a learned
interpretation. Our investigation therefore only explores the cognitive
processing associated with assessing magnitude in charts which viewers
know how to read.

This study was designed to explore one factor involved in assessing
magnitude. The influence of axis limits on interpretations was relatively
small, raising the question of how much this factor influences real-
world decision-making and behaviour. A forced choice measure, or
response scale with concrete values, would be suitable for capturing
these outcomes in future work. Addressing this question will help to
quantify how much a designer’s choice of axis limits affects a viewer’s
choices and actions. An appreciable effect would have implications
for visualisation design, suggesting use of axis limits which convey
magnitude appropriately to avoid misleading users. Suitable axis limits
cannot be objectively determined, but must be informed by the designer,
based on their assessment of the data [8]. The effects of axis limits
on discrimination ability would also warrant consideration, taking
account of the intended application. In addition, future work could
systematically manipulate the range of the axes (e.g., expanding beyond
10 percentage points) to investigate how this influences magnitude
judgements. Pre-registration of experiments and analysis protocol
would also increase the credibility of future work on this topic.

6 CONCLUSION

We conducted two experiments investigating how axis limits inform in-
terpretations of the magnitude of plotted values. Subjective judgements
were affected by the positions of data points in relation to accompany-
ing axis limits. The association between the positions of data points
and magnitude judgements critically depends on whether plotted data
appear closer to the axis limit associated with higher or lower values.
The cognitive processes associated with assessing magnitude in data
visualisations involve taking into account the context in which the data
appear.
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