15 research outputs found

    A New Class Of Soft Dendritic Colloidal Microgels With Extraordinary Gelation And Adhesive Capabilities

    Get PDF
    The interplay between morphology, excluded volume, and adhesivity of colloidal-scale particles critically determines the physical properties of numerous materials such as gels, suspensions, emulsions, foams, and coatings. The structure-building and gel-forming abilities of colloids in liquid can be enhanced by particles with branched and fractal morphology. We will present a new class of soft dendritic colloids (“dendricolloids”) that are fabricated by a simple and scalable process of polymer precipitation in turbulently sheared liquid medium. These new soft particles have a hierarchical morphology similar to molecular-scale polymer dendrimers, but two orders of magnitude larger in scale. The polymer microgel-like particle with branched and fractal morphology are formed as a result of the eddy-guided polymer precipitation in turbulently sheared liquid. The ultralow interfacial tension of a polymer solution, combined with concurrent phase separation and precipitation, results in the formation of hierarchical fibrillar polymer microgels. The branched, dendritic particles are surrounded by a corona of polymer nanofibers spreading out in all directions. The dendricolloids combine the properties of two of the most fascinating and studied soft matter systems – the freely-suspended dendritic particles have very large excluded volume, while on contact their nanofiber corona possesses the highly adhesive abilities of the nanofiber-padded gecko legs. We investigate and analyze the origins of these effects, which are closely associated with omnipresent van der Waals forces and the phenomenon of “contact splitting” that allows the legs of the gecko lizards to stick to any surface. The fractal branching and contact splitting phenomena of the polymer dendricolloids enable a range of highly unusual properties – gelation at extremely low volume fractions, strong adhesion to surfaces and to each other, and ability to bind strongly and form coatings, nonwoven sheets, and ultrasoft membranes. Please click Additional Files below to see the full abstract

    A new class of dendrimeric gecko legs polymer particles with extraordinary structure- building, gelation and adhesive capabilities

    Get PDF
    Particulate rheology modifiers are important component of many cosmetics, food, and pharmaceutical formulations. The efficiency of rheology modifiers is usually determined by the interplay between surface area and shape of suspended particles. We will present a new class of nanofibrilated dendrimeric polymer particles (DPPs) with very high surface area and morphology engineered for applications in rheology modifiers and adhesives. The DPPs are fabricated in a novel efficient and scalable process for liquid-based synthesis of nanomaterials by antisolvent precipitation in turbulently sheared medium. The process allows for a variety of polymers to be readily made into DPPs which are hierarchically structured, with a big branched corona of nanofibers spreading out in all directions. The hierarchical structure endows DPPs with high excluded volume. They build a stable three-dimensional network leading to gel-like behavior at fractions as low as 1-2 vol.% of DPPs in various liquids. In addition, the biomimetic similarity of their structure to the gecko lizards’ setae endows the DPPs with excellent adhesion and cohesion properties. Our results demonstrate that this strong adhesion and cohesion are attributed to the contact splitting and van der Waals interactions of their nanofibrous structures. This new class of polymeric particles opens new ways to make strong non-covalent binding coatings, new types of dry adhesives, nonwovens and fluid-gels. They could have a transformative role as rheology modifiers and nano-adhesives to hair and skin in many cosmetics formulations. Please click Additional Files below to see the full abstract

    Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    Get PDF
    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45–250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles’ surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation

    No full text
    Purpose: In the frame of the QA program of RENEB, an inter-laboratory comparison (ILC) of calibration sources used in biological dosimetry was achieved to investigate the influence of calibration practices and protocols on the results of the dose estimation performance as a first step to harmonization and standardization of dosimetry and irradiation practices in the European biological dosimetry network. Materials and methods: Delivered doses by irradiation facilities used by RENEB partners were determined with EPR/alanine dosimetry system. Dosimeters were irradiated in the same conditions as blood samples. A short survey was also performed to collect the information needed for the data analysis and evaluate the diversity of practices. Results: For most of partners the deviation of delivered dose from the targeted dose remains below 10%. Deviations larger than 10% were observed for five facilities out of 21. Origins of the largest discrepancies were identified. Correction actions were evaluated as satisfactory. The re-evaluation of some ILC results for the fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC) assays has been performed leading to an improvement of the overall performances. Conclusions: This work has shown the importance of dosimetry in radiobiology studies and the needs of harmonization, standardization in irradiation and dosimetry practices and educational training for biologists using ionizing radiation

    3D Printing by Multiphase Silicone/Water Capillary Inks

    No full text
    3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures

    Soft dendritic microparticles with unusual adhesion and structuring properties

    No full text
    The interplay between morphology, excluded volume and adhesivity of particles critically determines the physical properties of numerous soft materials and coatings1–6. Branched particles2 or nanofibres3, nanofibrillated cellulose4 or fumed silica5 can enhance the structure-building abilities of colloids, whose adhesion may also be increased by capillarity or binding agents6. Nonetheless, alternative mechanisms of strong adhesion found in nature involve fibrillar mats with numerous subcontacts (contact splitting)7–11 as seen in the feet of gecko lizards and spider webs12–17. Here, we describe the fabrication of hierarchically structured polymeric microparticles having branched nanofibre coronas with a dendritic morphology. Polymer precipitation in highly turbulent flow results in microparticles with fractal branching and nanofibrillar contact splitting that exhibit gelation at very low volume fractions, strong interparticle adhesion and binding into coatings and non-woven sheets. These soft dendritic particles also have potential advantages for food, personal care or pharmaceutical product formulations.</p

    Fluid Flow Templating of Polymeric Soft Matter with Diverse Morphologies

    No full text
    It is challenging to find a conventional nanofabrication technique that can consistently produce soft polymeric matter of high surface area and nanoscale morphology in a way that is scalable, versatile, and easily tunable. Here, the capabilities of a universal method for fabricating diverse nano- and micro-scale morphologies based on polymer precipitation templated by the fluid streamlines in multiphasic flow are explored. It is shown that while the procedure is operationally simple, various combinations of its intertwined mechanisms can controllably and reproducibly lead to the formation of an extraordinary wide range of colloidal morphologies. By systematically investigating the process conditions, 12 distinct classes of polymer micro- and nano-structures including particles, rods, ribbons, nanosheets, and soft dendritic colloids (dendricolloids) are identified. The outcomes are interpreted by delineating the physical processes into three stages: hydrodynamic shear, capillary and mechanical breakup, and polymer precipitation rate. The insights into the underlying fundamental mechanisms provide guidance toward developing a versatile and scalable nanofabrication platform. It is verified that the liquid shear-based technique is versatile and works well with many chemically diverse polymers and biopolymers, showing potential as a universal tool for simple and scalable nanofabrication of many morphologically distinct soft matter classes

    Scalable Formation of Concentrated Monodisperse Lignin Nanoparticles by Recirculation-Enhanced Flash Nanoprecipitation

    No full text
    A highly controllable and scalable process for fabrication of large amounts of concentrated lignin nanoparticles (LNPs) is reported. These lignin core nanoparticles are formed through flash nanoprecipitation, however, scaling up of the fabrication process requires fundamental understanding of their operational formation mechanism and surface properties. It is shown how a semicontinuous synthesis system with a recirculation loop makes it possible to produce flash precipitated lignin nanoparticles in large amounts for practical applications. The roles of the process parameters, including flow rates and lignin concentration, are investigated and analyzed. The results indicate that the LNPs are formed by a process of continuous burst nucleation at the point of mixing without diffusive growth, which yields nanoparticles of highly uniform size following a modified LaMer nucleation and growth mechanism. This mechanism makes possible facile process control and scale-up. Effective control of the resulting nanoparticle size is achieved through the initial concentration of lignin in the injected solution. The impressive capability to produce suspensions of any predesigned multimodal distribution is demonstrated. The resulting nanofabrication technique can produce large volumes of concentrated LNP suspensions of high stability and tightly controlled size distributions for biological or agricultural applications.</p

    >

    No full text
    corecore