101 research outputs found

    Comparisons and challenges of modern neutrino scattering experiments (TENSIONS2016 report)

    Get PDF
    Over the last decade, there has been enormous effort to measure neutrino interaction cross sections important to oscillation experiments. However, a number of results from modern experiments appear to be in tension with each other, despite purporting to measure the same processes. The TENSIONS2016 workshop was held at University of Pittsburgh July 24–31, 2016 and was sponsored by the Pittsburgh Particle Physics, Astronomy, and Cosmology Center (PITT PACC). The focus was on bringing experts from three experimental collaborations together to compare results in detail and try to find the source of tension by clarifying and comparing signal definitions and the analysis strategies used for each measurement. A set of comparisons between the measurements using a consistent set of models was also made. This paper summarizes the main conclusions of that work

    Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A

    Get PDF
    Despite the fact that more than 5000 safety-related studies have been published on bisphenol A (BPA), there seems to be no resolution of the apparently deadlocked controversy as to whether exposure of the general population to BPA causes adverse effects due to its estrogenicity. Therefore, the Advisory Committee of the German Society of Toxicology reviewed the background and cutting-edge topics of this BPA controversy. The current tolerable daily intake value (TDI) of 0.05 mg/kg body weight [bw]/day, derived by the European Food Safety Authority (EFSA), is mainly based on body weight changes in two- and three-generation studies in mice and rats. Recently, these studies and the derivation of the TDI have been criticized. After having carefully considered all arguments, the Committee had to conclude that the criticism was scientifically not justified; moreover, recently published additional data further support the reliability of the two-and three-generation studies demonstrating a lack of estrogen-dependent effects at and below doses on which the current TDI is based. A frequently discussed topic is whether doses below 5 mg/ kg bw/day may cause adverse health effects in laboratory animals. Meanwhile, it has become clear that positive results from some explorative studies have not been confirmed in subsequent studies with higher numbers of animals or a priori defined hypotheses. Particularly relevant are some recent studies with negative outcomes that addressed effects of BPA on the brain, behavior, and the prostate in rodents for extrapolation to the human situation. The Committee came to the conclusion that rodent data can well be used as a basis for human risk evaluation. Currently published conjectures that rats are insensitive to estrogens compared to humans can be refuted. Data from toxicokinetics studies show that the half-life of BPA in adult human subjects is less than 2 hours and BPA is completely recovered in urine as BPA-conjugates. Tissue deconjugation of BPA-glucuronide and -sulfate may occur. Because of the extremely low quantities, it is only of minor relevance for BPA toxicity. Biomonitoring studies have been used to estimate human BPA exposure and show that the daily intake of BPA is far below the TDI for the general population. Further topics addressed in this article include reasons why some studies on BPA are not reproducible; the relevance of oral versus non-oral exposure routes; the degree to which newborns are at higher systemic BPA exposure; increased BPA exposure by infusions in intensive care units; mechanisms of action other than estrogen receptor activation; and the current regulatory status in Europe, as well as in the USA, Canada, Japan, New Zealand, and Australia. Overall, the Committee concluded that the current TDI for BPA is adequately justified and that the available evidence indicates that BPA exposure represents no noteworthy risk to the health of the human population, including newborns and babies

    Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×102120\times10^{21} POT

    Get PDF
    18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of 7.8×10217.8\times 10^{21} protons-on-target to 20×102120\times 10^{21} protons-on-target,aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio

    Proposal for an Extended Run of T2K to 20×102120\times10^{21} POT

    Get PDF
    68 pages, 31 figures68 pages, 31 figures68 pages, 31 figuresRecent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from 7.8\times 10^{21}~\mbox{POT} to 20\times 10^{21}~\mbox{POT}, aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, θ23\theta_{23} and Δm322\Delta m^2_{32}, with a precision of 1.7^\circ or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026

    Measurement of the single pi(0) production rate in neutral current neutrino interactions on water

    Get PDF
    The single π0 production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the PØD, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the PØD contained water (2.64×10(20) protons-on-target) and also periods without water (3.49×10(20) protons-on-target). A measurement of the neutral current single π0 production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106 ± 41 ± 69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68 ± 0.26 (stat) ± 0.44 (sys) ± 0.12 (flux). The nominal simulation uses a flux integrated cross section of 7.63×10(−39)cm(2) per nucleon with an average neutrino interaction energy of 1.3 GeV

    First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

    Get PDF
    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies 0.8{\sim}0.8 GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by pπ+>200p_{\pi^+}>200MeV/c, pμ>200p_{\mu^-}>200MeV/c, cosθπ+>0.3\cos \theta_{\pi^+}>0.3 and cosθμ>0.3\cos \theta_{\mu^-}>0.3. The total flux integrated νμ\nu_\mu charged current single positive pion production cross section on water in the restricted phase-space is measured to be σϕ=4.25±0.48(stat)±1.56(syst)×1040cm2/nucleon\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}. The total cross section is consistent with the NEUT prediction (5.03×1040cm2/nucleon5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}) and 2σ\sigma lower than the GENIE prediction (7.68×1040cm2/nucleon7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization
    corecore