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Abstract

Real-time musical note onset detection plays a vital role in many audio analysis processes, such as score following,
beat detection and various sound synthesis by analysis methods. This article provides a review of some of the
most commonly used techniques for real-time onset detection. We suggest ways to improve these techniques by
incorporating linear prediction as well as presenting a novel algorithm for real-time onset detection using
sinusoidal modelling. We provide comprehensive results for both the detection accuracy and the computational
performance of all of the described techniques, evaluated using Modal, our new open source library for musical
onset detection, which comes with a free database of samples with hand-labelled note onsets.

1 Introduction
Many real-time musical signal-processing applications
depend on the temporal segmentation of the audio sig-
nal into discrete note events. Systems such as score fol-
lowers [1] may use detected note events to interact
directly with a live performer. Beat-synchronous analysis
systems [2,3] group detected notes into beats, where a
beat is the dominant time unit or metric pulse of the
music, then use this knowledge to improve an underly-
ing analysis process.
In sound synthesis by analysis, the choice of proces-

sing algorithm will often depend on the characteristics
of the sound source. Spectral processing tools such as
the Phase Vocoder [4] are a well-established means of
time-stretching and pitch-shifting harmonic musical
notes, but they have well-documented weaknesses in
dealing with noisy or transient signals [5]. For real-time
applications of tools such as the Phase Vocoder, it may
not be possible to depend on any prior knowledge of
the signal to select the processing algorithm, and so we
must be able to identify transient regions on-the-fly to
reduce synthesis artefacts. It is within this context that
onset detection will be studied in this article.
While there have been several recent studies that

examined musical note onset detection [6-8], there have
been few that analysed the real-time performance of the
published techniques. One of the aims of this article is

to provide such an overview. In Section 2, some of the
common onset-detection techniques from the literature
are described. In Section 3.1, we suggest a way to
improve on these techniques by incorporating linear
prediction (LP) [9]. In Section 4.1, we present a novel
onset-detection method that uses sinusoidal modelling
[10]. Section 5.1 introduces Modal, our new open
source library for musical onset detection. This is then
used to evaluate all of the previously described algo-
rithms, with the results being given in Sections 5.2 and
5.3, and then discussed in Section 5.4. This evaluation
includes details of the performance of all of the algo-
rithms in terms of both accuracy and computational
requirements.

2 Real-time onset detection
2.1 Definitions
This article distinguishes between the terms audio buffer
and audio frame as follows:
Audio buffer: A group of consecutive audio samples

taken from the input signal. The algorithms in this arti-
cle all use a fixed buffer size of 512 samples.
Audio frame: A group of consecutive audio buffers.

All the algorithms described here operate on overlap-
ping, fixed-sized frames of audio. These frames are four
audio buffers (2,048 samples) in duration, consisting of
the most recent audio buffer which is passed directly to
the algorithm, combined with the previous three buffers
which are saved in memory. The start of each frame is* Correspondence: John.C.Glover@nuim.ie
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separated by a fixed number of samples, which is equal
to the buffer size.
In order to say that an onset-detection system runs in

real time, we require two characteristics:
1. Low latency
The time between an onset occurring in the input audio
stream and the system correctly registering an onset
occurrence must be no more than 50 ms. This value
was chosen to allow for the difficulty in specifying refer-
ence onsets, which is described in more detail in Section
2.1.1. All of the onset-detection schemes that are
described in this article have latency of 1,024 samples
(the size of two audio buffers), except for the peak
amplitude difference method (given in Section 4.3)
which has an additional latency of 512 samples, or 1,536
samples of latency in total. This corresponds to latency
times of 23.2 and 34.8 ms respectively, at a sampling
rate of 44.1 kHz. The reason for the 1,024 sample delay
on all the onset-detection systems is explained in Sec-
tion 2.2.2, while the cause of the additional latency for
the peak amplitude difference method is given in Sec-
tion 4.3.
2. Low processing time
The time taken by the algorithm to process one frame
of audio must be less than the duration of audio that is
held in each buffer. As the buffer size is fixed at 512
samples, the algorithm must be able to process a frame
in 11.6 ms or less when operating at a sampling rate of
44.1 kHz.
It is also important to draw a distinction between the

terms onset, transient and attack in relation to musical
notes. This article follows the definitions given in [6],
summarised as follows:
Attack: The time interval during which the amplitude

envelope increases.
Transient: A short interval during which the signal

evolves in a relatively unpredictable way. It often corre-
sponds to the time during which the excitation is
applied then dampened.
Onset: A single instant marking the beginning of a

transient.
2.1.1 The detection window The process of verifying
that an onset has been correctly detected is not straight-
forward. The ideal situation would be to compare the
detected onsets produced by an onset-detection system
with a list of reference onsets. An onset could then be
said to be correctly detected if it lies within a chosen
time interval around the reference onset, referred to
here as the detection window. In reality, it is difficult to
give exact values for reference onsets, particularly in the
case of instruments with a soft attack, such as the flute
or bowed violin. Finding reference onsets from natural
sounds generally involves human annotation of audio
samples. This inevitably leads to inconsistencies, and it

was shown in [11] that the annotation process is depen-
dent on the listener, the software used to label the
onsets and the type of music being labelled. In [12], Vos
and Rasch make a distinction between the Physical
Onset Time and the Perceptual Onset Time of a musical
note, which again can lead to differences between the
values selected as reference onsets, particularly if there
is a mixture of natural and synthetic sounds. To com-
pensate for these limitations of the annotation process,
we follow the decision made in a number of recent stu-
dies [6-8] to use a detection window that is 50 ms in
duration.

2.2 The general form of onset-detection algorithms
As onset locations are typically defined as being the
start of a transient, the problem of finding their position
is linked to the problem of detecting transient intervals
in the signal. Another way to phrase this is to say that
onset detection is the process of identifying which parts
of a signal are relatively unpredictable.
2.2.1 Onset-detection functions
The majority of the algorithms described in the litera-
ture involve an initial data reduction step, transforming
the audio signal into an onset-detection function (ODF),
which is a representation of the audio signal at a much
lower sampling rate. The ODF usually consists of one
value for every frame of audio, and should give a good
indication as to the measure of the unpredictability of
that frame. Higher values correspond to greater unpre-
dictability. Figure 1 gives an example of a percussive
audio sample together with an ODF calculated using the
spectral difference method (see Section 2.3.2 for more
details on this technique).
2.2.2 Peak detection
The next stage in the onset-detection process is to iden-
tify local maxima, also called peaks, in the ODF. The
location of each peak is recorded as an onset location if
the peak value is above a certain threshold. While peak
picking and thresholding are described elsewhere in the
literature [13], both require special treatment to operate
with the limitations of strict real-time operation (defined
in Section 2.1). As this article focuses on the evaluation
of different ODFs in real-time, the peak-picking and
thresholding processes are identical for each ODF.
When processing a real-time stream of ODF values,

the first stage in the peak-detection algorithm is to see
if the current values are local maxima. In order to make
this assessment, the current ODF value must be com-
pared to the two neighbouring values. As we cannot
‘look ahead’ to get the next ODF value, it is necessary to
save both the previous and the current ODF values and
wait until the next value has been computed to make
the comparison. This means that there must always be
some additional latency in the peak-picking process, in
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this case equal to the buffer size which is fixed at 512
samples. When working with a sampling rate of 44.1
kHz, this results in a total algorithm latency of two buf-
fer sizes or approximately 23.2 ms. The process is sum-
marised in Algorithm 1.
2.2.3 Threshold calculation
Thresholds are calculated using a slight variation of the
median/mean function described in [14] and given by
Equation 1, where sn is the threshold value at frame n,
O[nm] is the previous m values of the ODF at frame n,
l is a positive median weighting value, and a is a posi-
tive mean weighting value:

σn = λ × median(O[nm]) + α × mean(O[nm]) +N. (1)

The difference between (1) and the formula in [14] is
the addition of the term N, which is defined as

N = w × v, (2)

where v is the value of the largest peak detected so far,
and w is a weighting value. For indefinite real-time use, it
is advisable to either set w = 0 or to update w at regular

intervals to account for changes in dynamic level. Figure
2 shows the values of the dynamic threshold (green
dashes) of the ODF given in Figure 1, computed using m
= 7, l = 1.0, a = 2.0 and w = 0.05. Every ODF peak that
is above this threshold (highlighted in Figure 2 with red
circles) is taken to be a note onset location.

2.3 Onset-detection functions
This section reviews several existing approaches to
creating ODFs that can be used in a real-time situation.
Each technique operates on frames of N samples, with
the start of each frame being separated by a fixed buffer
size of h samples. The ODFs retum one value for every
frame, corresponding to the likelihood of that frame
containing a note onset. A full analysis of the detection
accuracy and computational efficiency of each algorithm
is given in Section 5.
2.3.1 Energy ODF
This approach, described in [5], is the most simple con-
ceptually and is the most computationally efficient. It is
based on the premise that musical note onsets often
have more energy than the steady-state component of

Figure 1 Percussive audio sample with ODF generated using the spectral difference method.
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the note, as in the case of many instruments, this is
when the excitation is applied. Larger changes in the
amplitude envelope of the signal should therefore coin-
cide with onset locations. For each frame, the energy is
given by

E(n) =
N∑

m=0

x(m)2, (3)

where E(n) is the energy of frame n, and x(m) is the
value of the mth sample in the frame. The value of the
energy ODF (ODFE) for frame n is the absolute value of
the difference in energy values between consecutive
frames:

ODFE(n) =| E(n) − E(n − 1) | . (4)

2.3.2 Spectral difference ODF
Many recent techniques for creating ODFs have tended
towards identifying time-varying changes in a frequency
domain representation of an audio signal. These
approaches have proven to be successful in a number of
areas, such as in detecting onsets in polyphonic signals
[15] and in detecting ‘soft’ onsets created by instruments
such as the bowed violin which do not have a percussive
attack [16]. The spectral difference ODF (ODFSD) is cal-
culated by examining frame-to-frame changes in the
Short-Time Fourier Transform [17] of an audio signal
and so falls into this category.
The Fourier transform of the nth frame, windowed

using a Hanning window w(m) of size N is given by

X(k,n) =
N−1∑
m=0

x(m)w(m)e
−2jπmk

N , (5)

where X(k, n) is the kth frequency bin of the nth
frame.
The spectral difference [16] is the absolute value of

the change in magnitude between corresponding bins in
consecutive frames. As a new musical onset will often
result in a sudden change in the frequency content in
an audio signal, large changes in the average spectral
difference of a frame will often correspond with note
onsets. The spectral difference ODF is thus created by
summing the spectral difference across all bins in a
frame and is given by

ODFSD(n) =
N/2∑
k=0

‖ X(k,n) | − | X(k,n − 1) ‖. (6)

2.3.3 Complex domain ODF
Another way to view the construction of an ODF is in
terms of predictions and deviations from predicted
values. For every spectral bin in the Fourier transform
of a frame of audio samples, the spectral difference ODF
predicts that the next magnitude value will be the same
as the current one. In the steady state of a musical note,
changes in the magnitude of a given bin between conse-
cutive frames should be relatively low, and so this pre-
diction should be accurate. In transient regions, these
variations should be more pronounced, and so the aver-
age deviation from the predicted value should be higher,
resulting in peaks in the ODF.
Instead of making predictions using only the bin mag-

nitudes, the complex domain ODF [18] attempts to
improve the prediction for the next value of a given bin
using combined magnitude and phase information. The
magnitude prediction is the magnitude value from the
corresponding bin in the previous frame. In polar form,

Figure 2 ODF peaks detected (circled) and threshold (dashes) during real-time peak picking.
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we can write this predicted value as

R̂(k,n) =| X(k,n − 1) | . (7)

The phase prediction is formed by assuming a con-
stant rate of phase change between frames:

φ̂(k,n) = princarg[2ϕ(k,n − 1) − ϕ(k,n − 2)], (8)

where princarg maps the phase to the [-π, π] range,
and �(k, n) is the phase of the kth bin in the nth frame.
If R(k, n) and j (k, n) are the actual values of the magni-
tude and phase, respectively, of bin k in frame n, then
the deviation between the prediction and the actual
measurement is the Euclidean distance between the two
complex phasors, which can be written as

�(k,n) =
√
R(k,n)2 + R̂(k,n)2 − 2R(k,n)R̂(k,n) cos(φ(k,n) − φ̂(k,n)). (9)

The complex domain ODF (ODFCD) is the sum of
these deviations across all the bins in a frame, as given
in

ODFCD(n) =
N/2∑
k=0

�(k,n). (10)

3 Measuring signal predictability
The ODFs that are described in Section 2.3, and the
majority of those found elsewhere in the literature [6],
are trying to distinguish between the steady-state and
transient regions of an audio signal by making predic-
tions based on information about the most recent frame
of audio and one or two preceding frames. In this sec-
tion, we present methods that use the same basic signal
information to the approaches described in Section 2.3,
but instead of making predictions based onjust one or
two frames of these data, we use an arbitrary number of
previous values combined with LP to improve the accu-
racy of the estimate. The ODF is then the absolute
value of the differences between the actual frame mea-
surements and the LP predictions. The ODF values are
low when the LP prediction is accurate, but larger in
regions of the signal that are more unpredictable, which
should correspond with note onset locations.
This is not the first time that LP errors have been

used to create an ODF. The authors in [19] describe a
somewhat similar system in which an audio signal is
first filtered into six non-overlapping sub-bands. The
first five bands are then decimated by a factor of 20:1
before being passed to a LP error filter, while just the
amplitude envelope is taken from the sixth band (every-
thing above the note B7 which is 3,951 kHz). Their
ODF is the sum of the five LP error signals and the
amplitude envelope from the sixth band.

Our approach differs in a number of ways. In this arti-
cle we show that LP can be used to improve the detec-
tion accuracy of the three ODFs described in Section
2.3 (detection results are given in Section 5). As this
approach involves predicting the time-varying changes
in signal features (energy, spectral difference and com-
plex phasor positions) rather than in the signal itself,
the same technique could be applied to many existing
ODFs from the literature, and so it can be viewed as an
additional post-processing step that can potentially
improve the detection accuracy of existing ODFs. Our
algorithms are suitable for real-time use, and the results
were compiled from real-time data. In contrast, the
results given in [19] are based on off-line processing,
and include an initial pre-processing step to normalise
the input audio files, and so it is not clear how well this
method performs in a real-time situation.
The LP process that is used in this article is described

in Section 3.1. In Sections 3.2, 3.3 and 3.4, we show that
this can be used to create new ODFs based on the
energy, spectral difference and complex domain ODFs,
respectively.

3.1 Linear prediction
In the LP model, also known as the autoregressive
model, the current input sample x(n) is estimated by a
weighted combination of the past values of the signal.
The predicted value, x̂(n), is computed by FIR filtering
according to

x̂(n) =
p∑

k=1

akx(n − k), (11)

where p is the order of the LP model and ak are the
prediction coefficients.
The challenge is then to calculate the LP coefficients.

There are a number of methods given in the literature,
the most widespread among which are the autocorrela-
tion method [20], covariance method [9] and the Burg
method [21]. Each of the three methods was evaluated,
but the Burg method was selected as it produced the
most accurate and consistent results. Like the autocorre-
lation method, it has a minimum phase, and like the
covariance method it estimates the coefficients on a
finite support [21]. It can also be efficiently implemen-
ted in real time [20].
3.1.1 The Burg algorithm
The LP error is the difference between the predicted
and the actual values:

e(n) = x(n) − x̂(n). (12)

The Burg algorithm minimises average of the forward
prediction error fm(n) and the backward prediction error
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bm(n). The initial (order 0) forward and backward errors
are given by

f0(n) = x(n), (13)

b0(n) = x(n) (14)

over the interval n = 0, ..., N - 1, where N is the block
length. For the remaining m = 1, ..., p, the mth coeffi-
cient is calculated from

km =
−2

∑N−1
n=m [fm−1(n)bm−1(n − 1)]∑N−1

n=m [f 2m−1(n) + b2m−1(n − 1)]
, (15)

and then the forward and backward prediction errors
are recursively calculated from

fm(n) = fm−1(n) − kmbm−1(n − 1) (16)

for n = m + 1, ..., N - 1, and

bm(n) = bm−1(n − 1) − kmfm−1(n) (17)

for n = m, ..., N - 1, respectively. Pseudocode for this
process is given in Algorithm 2, taken from [21].

3.2 Energy with LP
The energy ODF (given in Section 2.3.1) is derived from
the absolute value of the energy difference between two
frames. This can be viewed as using the energy value of
the first frame as a prediction of the energy of the sec-
ond, with the difference being the prediction error. In
this context, we try to improve this estimate using LP.
Energy values from the past p frames are taken, result-
ing in the sequence

E(n − 1),E(n − 2), . . . ,E(n − p).

Using (13)-(17), p coefficients are calculated based on
this sequence, and then a one-sample prediction is
made using (11). Hence, for each frame, the energy with
LP ODF (ODFELP) is given by

ODFELP(n) =| E(n) − PE(n) |, (18)

where PE(n) is the predicted energy value for frame n.
3.3 Spectral difference with LP
Similar techniques can be applied to the spectral differ-
ence and complex domain ODFs. The spectral differ-
ence ODF is formed from the absolute value of the
magnitude differences between corresponding bins in
adjacent frames. Similarly to the process described in
Section 3.2, this can be viewed as a prediction that the
magnitude in a given bin will remain constant between
adjacent frames, with the magnitude difference being
the prediction error. In the spectral difference with LP
ODF (ODFSDLP), the predicted magnitude value for each

of the k bins in frame n is calculated by taking the mag-
nitude values from the corresponding bins in the pre-
vious p frames, using them to find p LP coefficients
then filtering the result with (11). Hence, for each k in
n, the magnitude prediction coefficients are formed
using (13)-(17) on the sequence

| X(k,n − 1) |, | X(k,n − 2) |, . . . , | X(k,n − p) | .
If PSD (k, n) is the predicted spectral difference for bin

k in n, then

ODFSDLP(n) =
N/2∑
k=0

‖ X(k,n) | −PSD(k,n) |. (19)

As is shown in Section 5.3, this is a significant amount
of extra computation per frame compared with the
ODFSD given by Equation 6. However, it is still capable
of real-time performance, depending on the chosen LP
model order. We found that an order of 5 was enough
to significantly improve the detection accuracy while
still comfortably meeting the real-time processing
requirements. Detailed results are given in Section 5.

3.4 Complex domain with LP
The complex domain method described in Section 2.3.3
is based on measuring the Euclidean distance between
the predicted and the actual complex phasors for a
given bin. There are a number of different ways by
which LP could be applied in an attempt to improve
this estimate. The bin magnitudes and phases could be
predicted separately, based on their values over the pre-
vious p frames, and then combined to form an esti-
mated phasor value for the current frame. Another
possibility would be to only apply LP to one of either
the magnitude or the phase parameters.
However, we found that the biggest improvement

came from using LP to estimate the value of the Eucli-
dean distance that separates the complex phasors for a
given bin between consecutive frames. Hence, for each
bin k in frame n, the complex distances between the
kth bin in each of the last p frames are used to calcu-
late the LP coefficients. If R(k, n) is the magnitude of
the kth bin in frame n, and j (k, n) is the phase of the
bin, then the distance between the kth bins in frames
n and n - 1 is

�(k,n) =
√
R(k,n)2 + R(k,n − 1)2 − 2R(k,n)R(k,n − 1) cos(φ(k,n) − φ(k,n − 1)).

LP coefficients are formed from the values

�(k,n − 1),�(k,n − 2), . . . ,�(k,n − p)

using (13)-(17), and predictions PCD (k, n) are calcu-
lated using (11). The complex domain with LP ODF

Glover et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:68
http://asp.eurasipjournals.com/content/2011/1/68

Page 6 of 13



(ODFCDLP) is then given by

ODFCDLP(n) =
N/2∑
k=0

| �(k,n) − PCD(k,n) |. (20)

4 Real-time onset detection using sinusoidal
modelling
In Section 3, we describe a way to improve the detection
accuracy of several ODFs from the literature using LP to
enhance their estimates of the frame-by-frame evolution
of an audio signal. This improvement in detection accu-
racy comes at the expense of much greater computa-
tional cost, however (see Section 5 for detection
accuracy and performance results).
In this section, we present a novel ODF that has sifni-

ficantly better real-time performance than the LP-based
spectral methods. It uses sinusoidal modelling, and so it
is particularly useful in areas that include some sort of
harmonic analysis. We begin with an overview of sinu-
soidal modelling in Section 4.1, followed by a review of
previous study that uses sinusoidal modelling for onset
detection in Section 4.2 and then concludes with a
description of the new ODF in Section 4.3.

4.1 Sinusoidal modelling
Sinusoidal modelling [10] is based on Fourier’s theorem,
which states that any periodic waveform can be mod-
elled as the sum of sinusoids at various amplitudes and
harmonic frequencies. For stationary pseudo-periodic
sounds, these amplitudes and frequencies evolve slowly
with time. They can be used as parameters to control
pseudo-sinusoidal oscillators, commonly referred to as
partials. The audio signals can be calculated from the
sum of the partials using

s(t) =
Np∑
p=1

Ap(t) cos(θp(t)), (21)

θp(t) = θp(0) + 2π

∫ t

0
fp(u)du, (22)

where Np is the number of partials and Ap, fp and θp
are the amplitude, frequency and phase of the pth par-
tial, respectively. Typically, the parameters are measured
for every

t = nh/Fs,

where n is the sample number, h is the buffer size and
Fs is the sampling rate. To calculate the audio signal,
the parameters must then be interpolated between mea-
surements. Calculating these parameters for each frame
is referred to in this article as peak detection, while the

process of connecting these peaks between frames is
called partial tracking.

4.2 Sinusoidal modelling and onset detection
The sinusoidal modelling process can be extended,
creating models of sound based on the separation of the
audio signal into a combination of sinusoids and noise
[22], and further into combinations of sinusoids, noise
and transients [23]. Although primarily intended to
model transient components from musical signals, the
system described in [23] could also be adopted to detect
note onsets. The authors show that transient signals in
the time domain can be mapped onto sinusoidal signals
in a frequency domain, in this case, using the discrete
cosine transform (DCT) [24]. Roughly speaking, the
DCT of a transient time-domain signal produces a sig-
nal with a frequency that depends only on the time shift
of the transient. This information could then be used to
identify when the onset occurred. However, it is not sui-
table for real-time applications as it requires a DCT
frame size that makes the transients appear as a small
entity, with a frame duration of about 1 s recommended.
This is far too much a latency to meet the real-time
requirements that were specified in Section 2.1.
Another system that combines sinusoidal modelling

and onset detection is presented in [25]. It creates an
ODF that is a combination of two energy measurements.
The first is simply the energy in the audio signal over a
512 sample frame. If the energy of the current frame is
larger than that of a given number of previous frames,
then the current frame is a candidate for being an onset
location. A multi-resolution sinusoidal model is then
applied to the signal to isolate the harmonic component
of the sound. This differs from the sinusoidal modelling
implementation described above in that the audio signal
is first split into five octave spaced frequency bands.
Currently, only the lower three are used, while the
upper two (frequencies above about 5 kHz) are dis-
carded. Each band is then analysed using different win-
dow lengths, allowing for more frequency resolution in
the lower band at the expense of worse time resolution.
Sinusoidal amplitude, frequency and phase parameters
are estimated separately for each band, and linked
together to form partials. An additional post-processing
step is then applied, removing any partials that have an
average amplitude that is less than an adaptive psychoa-
coustic masking threshold, and removing any partials
that are less than 46 ms in duration.
As it stands, it is unclear whether or not the system

described in [25] is suitable for use as a real-time onset
detector. The stipulation that all sinusoidal partials must
be at least 46 ms in duration implies that there must be
a minimum latency of 46 ms in the sinusoidal modelling
process, putting it very close to our 50 ms limit. If used
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purely as an ODF in the onset-detection system
described in Section 2.3, the additional 11.6 ms of
latency incurred by the peak-detection stage would put
the total latency outside this 50-ms window. However,
their method uses a rising edge detector instead looking
for peaks, and so it may still meet our real-time require-
ments. Although as it was designed as part of a larger
system that was primarily intended to encode audio for
compression, no onset-detection accuracy or perfor-
mance results are given by the authors.
In contrast, the ODF that is presented in Section 4.3

was designed specifically as a real-time onset detector,
and so has a latency of just two buffer sizes (23.2 ms in
our implementation). As we discussed in Section 5, it
compares favourably to leading approaches from the lit-
erature in terms of computational efficiency, and it is
also more accurate than the reviewed methods.

4.3 Peak amplitude difference ODF
This ODF is based on the same underlying premise as
sinusoidal models, namely that during the steady state of
a musical note, the harmonic signal component can be
well modelled as a sum of sinusoids. These sinusoids
should evolve slowly in time, and should therefore be
well represented by the partials detected by the sinusoidal
modelling process. It follows then that during the steady
state, the absolute values of the frame-to-frame differ-
ences in the sinusoidal peak amplitudes and frequencies
should be quite low. In comparison, transient regions at
note onset locations should show considerably more
frame-by-frame variation in both peak frequency and
amplitude values. This is due to two main factors:

1. Many musical notes have an increase in signal
energy during their attack regions, corresponding to
a physical excitation being applied, which increases
the amplitude of the detected sinusoidal
components.
2. As transients are by definition less predictable and
less harmonic, the basic premise of the sinusoidal
model breaks down in these regions. This can result
in peaks existing in these regions that are really
noise and not part of any underlying harmonic com-
ponent. Often they will remain unmatched, and so
do not form long-duration partials. Alternatively, if
they are incorrectly matched, then it can result in
relatively large amplitude and/or frequency devia-
tions in the resulting partial. In either case, the dif-
ference between the parameters of the noisy peak
and the parameters of any peaks before and after it
in a partial will often differ sifnificantly.

Both these factors should lead to larger frame-to-
frame sinusoidal peak amplitude differences in transient

regions than in steady-state regions. We can therefore
create an ODF by analysing the differences in peak
amplitude values over consecutive frames.
The sinusoidal modelling algorithm that we used is

very close to the one described in [26], with a couple of
changes to the peak-detection process. Firstly, the num-
ber of peaks per frame can be limited to Mp, reducing
the computation required for the partial-tracking stage
[27,28]. If the number of detected peaks Np >Mp, then
the Mp largest amplitude peaks will be selected. Also, in
order to allow for consistent evaluation with the other
frequency domain ODFs described in this article, the
frame size is kept constant during the analysis (2,048
samples). The partial-tracking process is identical to the
one given in [26]. As this partial-tracking algorithm has
a delay of one buffer size, this ODF has an additional
latency of 512 samples, bringing the total detection
latency (including the peak-picking phase) to 1,536 sam-
ples or 34.8 ms when sampled at 44.1 kHz.
For a given frame n, let Pk(n) be the peak amplitude of

the kth partial. The peak amplitude difference ODF
(ODFPAD) is given by

ODFPAD(n) =
Mp∑
k=0

| Pk(n) − Pk(n − 1) |. (23)

In the steady state, frame-to-frame peak amplitude dif-
ferences for matched peaks should be relatively low, and
as the matching process here is significantly easier than
in transient regions, less matching errors are expected.
At note onsets, matched peaks should have larger ampli-
tude deviations due to more energy in the signal, and
there should also be more unmatched or incorrectly
matched noisy peaks, increasing the ODF value. As spe-
cified in [26], unmatched peaks for a frame are taken to
be the start of a partial, and so the amplitude difference
is equal to the amplitude of the peak, Pk(n).

5 Evaluation of real-time ODFs
This section provides evaluations of all of the ODFs
described in this article. Section 5.1 describes a new
library of onset-detection software, which includes a
database of hand-annotated musical note onsets, which
was created as part of this study. This database was
adopted to assess the performance of the different algo-
rithms. Section 5.2 evaluates the detection accuracy of
each ODF, with their computational complexities
described in Section 5.3. Section 5.4 concludes with a
discussion of the evaluation results.

5.1 Musical onset database and library (modal)
In order to evaluate the different ODFs described in
Sections 2.3, 3 and 4.3, it was necessary to access a set
of audio files with reference onset locations. To the best
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of our knowledge, the Sound Onset Labellizer [11] was
the only freely available reference collection, but unfor-
tunately it was not available at the time of publication.
Their reference set also made use of files from the
RWC database [29], which although publicly available is
not free and does not allow free redistribution.
These issues lead to the creation of Modal, which con-

tains a free collection of samples, all with creative com-
mons licensing allowing for free reuse and
redistribution, and including hand-annotated onsets for
each file. Modal is also a new open source (GPL), cross-
platform library for musical onset detection written in C
++ and Python, and contains implementations of all of
the ODFs discussed in this article in both programming
languages. In addition, from Python, there is onset
detection and plotting functionality, as well as code for
generating our analysis data and results. It also includes
an application that allows for the labelling of onset loca-
tions in audio files, which can then be added to the
database. Modal is available now at http://github.com/
johnglover/modal.

5.2 Detection results
The detection accuracy of the ODFs was measured by
comparing the onsets detected using each method with
the reference samples in the Modal database. To be
marked as ‘correctly detected’, the onset must be located
within 50 ms of a reference onset. Merged or double
onsets were not penalised. The database currently con-
tains 501 onsets from annotated sounds that are mainly
monophonic, and so this must be taken into considera-
tion when viewing the results. The annotations were
also all made by one person, and while it has been
shown in [11] that this is not ideal, the chosen detection
window of 50 ms should compensate for some of the
inevitable inconsistencies.
The results are summarised by three measurements

that are common in the field of Information Retrieval
[15]: the precision (P), the recall (R), and the F-measure
(F) defined here as follows:

P =
C

C + fp
, (24)

R =
C

C + fn
, (25)

F =
2PR
P + R

, (26)

where C is the number of correctly detected onsets, fp
is the number of false positives (detected onsets with no
matching reference onset), and fn is the number of false

negatives (reference onsets with no matching detected
onset).
Every reference sample in the database was streamed

one buffer at a time to each ODF, with ODF values
for each buffer being passed immediately to a real-
time peak-picking system, as described in Algorithm
1. Dynamic thresholding was applied according to (1),
with l = 1.0, a = 2.0, and w in (2) set to 0.05. A med-
ian window of seven previous values was used. These
parameters were kept constant for each ODF. Our
novel methods that use LP (described in Sections 3.2,
3.3 and 3.4) each used a model order of 5, while our
peak amplitude difference method described in Sec-
tion 4.3 was limited to a maximum of 20 peaks per
frame.
The precision, recall and F-measure results for each

ODF are given in Figures 3, 4 and 5, respectively. In
each figure, the blue bars give the results for the ODFs
from the literature (described in Section 2.3), the brown
bars give the results for our LP methods, and the green
bar gives the results for our peak amplitude difference
method.
Figure 3 shows that the precision values for all our

methods are higher than the methods from the litera-
ture. The addition of LP noticeably improves each ODF
to which it is applied to. The precision values for the
peak amplitude difference method is better than the lit-
erature methods and the energy with LP method, but
worse than the two spectral-based LP methods.
The recall results for each ODF are given in Figure 4.

In this figure, we see that LP has improved the energy
method, but made the spectral difference and complex
domain methods slightly worse. The peak amplitude dif-
ference method has a greater recall than all of the litera-
ture methods and is only second to the energy with LP
ODF.

Figure 3 Precision values for each ODF.
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Figure 5 gives the F-measure for each ODF. All of our
proposed methods are shown to perform better than the
methods from the literature. The spectral difference
with LP ODF has the best detection accuracy, while the
energy with LP, complex domain with LP and peak
amplitude difference methods are all closely matched.

5.3 Performance results
In Table 1, we give the worst-case number of floating-
point operations per second (FLOPS) required by each
ODF to process real-time audio streams, based on our
implementations in the Modal library. This analysis
does not include data from the setup/initialisation peri-
ods of any of the algorithms, or data from the peak-
detection stage of the onset-detection system. As speci-
fied in Section 2.1, the audio frame size is 2,048 sam-
ples, the buffer size is 512 samples, and the sampling
rate is 44.1 kHz. The LP methods all use a model of the
order of 5. The number of peaks in the ODFPAD is lim-
ited to 20.

These totals were calculated by counting the number
of floating-point operations required by each ODF to
process 1 frame of audio, where we define a floating-
point operation to be an addition, subtraction, multipli-
cation, division or assignment involving a floating-point
number. As we have a buffer size of 512 samples mea-
sured at 44.1 kHz, we have 86.133 frames of audio per
second, and so the number of operations required by
each ODF per frame of audio was multiplied by 86.133
to get the FLOPS total for the corresponding ODF.
To simplify the calculations, the following assump-

tions were made when calculating the totals:

• As we are using the real fast Fourier transform
(FFT) computed using the FFTW3 library [30], the
processing time required for a FFT is 2. 5N log2 (N)
where N is the FFT size, as given in [31].
• The complexity of basic arithmetic functions in the
C++ standard library such as √, cos, sin, and log is O
(M), where M is the number of digits of precision at
which the function is to be evaluated.
• All integer operations can be ignored.
• All function call overheads can be ignored.

As Table 1 shows, the energy-based methods (ODFE
and ODFELP) require far less computation than any of
the others. The spectral difference ODF is the third fast-
est, needing about half the number of operations that
are required by the complex domain method. The
worst-case requirements for the peak amplitude differ-
ence method are still relatively close to the spectral dif-
ference ODF and noticeably quicker than the complex
domain ODF. As expected, the addition of LP to the
spectral difference and complex domain methods makes
them significantly more expensive computationally than
any other technique.
To give a more intuitive view of the algorithmic com-

plexity, in Table 2, we also give the estimated real-time
CPU usage for each ODF given as a percentage of the

Figure 4 Recall values for each ODF.

Figure 5 F-measure values for each ODF.

Table 1 Number of floating-point operations per second
(FLOPS) required by each ODF to process real-time audio
streams, with a buffer size of 512 samples, a frame size
of 2048 samples, a linear prediction model of the order
of 5, and a maximum of 20 peaks per frame for ODFPAD

FLOPS

ODFE 529,718

ODFSD 7,587,542

ODFCD 14,473,789

ODFELP 734,370

ODFSDLP 217,179,364

ODFCDLP 217,709,168

ODFPAD 9,555,940
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maximum number of FLOPS that can be achieved by
two different processors: an Intel Core 2 Duo and an
Analog Devices ADSP-TS201S (TigerSHARC). The Core
2 Duo has a clock speed of 2.8 GHz, a 6 MB L2 cache
and a bus speed of 1.07 GHz, providing a theoretical
best-case performance of 22.4 GFLOPS [32]. The
ADSP-TS201S has a clock speed of 600 MHz and a
best-case performance of 3.6 GFLOPS [33], and scores
relatively well on the BDTI DSP Kernel Benchmarks
[34]. Any value less than 100% here shows that the ODF
can be calculated in real time on this processor.

5.4 Discussion
The F-measure results (shown in Figure 5) for the meth-
ods described in Section 2.3 are lower than those given
elsewhere in the literature, but this was expected as
real-time performance is significantly more challenging
at the peak-picking and thresholding stages. The nature
of the sample set must also be taken into account, as
evidently, the heavy bias towards monophonic sounds is
reflected by the surprisingly strong performance of the
energy-based methods. As noted in [8], the various para-
meter settings can have a large impact on overall perfor-
mance. We tried to select a parameter set that gave a
fair reflection on each algorithm, but it must be noted
that every method can probably be improved by some
parameter adjustments, especially if prior knowledge of
the sound source is available.
In terms of performance, the LP methods are all sig-

nificantly slower than their counterparts. However, even
the most computationally expensive algorithm can run
with an estimated real-time CPU usage of just over 6%
on the ADSP-TS201S (TigerSHARC) processor, and so
they are still more than capable in respect of real-time
performance. The energy with LP ODF in particular is
extremely cheap computationally, and yet has relatively
good detection accuracy for this sample set.
The peak amplitude difference method is also notable

as it is computationally cheaper than the complex

domain ODF and compares favourably with the spectral
difference ODF, while giving better accuracy for our
sample set than the other two. For applications such as
real-time sound synthesis, which may already include a
sinusoidal modelling process, this becomes an extremely
quick method of onset detection. One significant differ-
ence between the peak amplitude difference ODF and
the others is that the computation time is not fixed, but
depends on the sound source. Harmonic material will
have well-defined partials, potentially requiring more
processing time for the partial-tracking process than
noisy sound sources, for this sinusoidal modelling
implementation at least.

6 Conclusions
In this article, we have described two new approaches to
real-time musical onset detection, one using LP and the
other using sinusoidal modelling. We compared these
approaches to some of the leading real-time musical
onset-detection algorithms from the literature, and
found that they can offer either improved accuracy,
computational efficiency, or both. It is recognised that
onset-detection results are very context sensitive, and so
without a more extensive sample set it is hard to make
completely conclusive comparisons to other methods.
However, our software and our sample database are
both released under open source licences and are freely
redistributable, so hopefully other researchers in the
field will contribute.
Choosing a real-time ODF remains a complex issue and

depends on the nature of the input sound, the available
processing power and the penalties that will be experi-
enced for producing false negatives and false positives.
However, some recommendations can be made based on
the results in this article. For our sample set, the spectral
difference with LP method produced the most accurate
results, and so, if computational complexity is not an
issue, then this would be a good choice. On the other
hand, if low complexity is an important requirement then
the energy with LP ODF is an attractive option. It pro-
duced accurate results at a fraction of the computational
cost of some of the established methods.
The peak amplitude difference ODF is also note-

worthy and should prove to be useful in areas such as
real-time sound synthesis by analysis. Spectral proces-
sing techniques such as the Phase Vocoder or sinusoidal
models work well during the steady-state regions of
musical notes, but have problems in transient areas
which follow note onsets [5,23]. One solution to this
problem is to identify these regions and process them
differently, which requires accurate onset detection to
avoid synthesis artefacts. It is in this context that the
peak amplitude difference ODF is particularly useful. It
was shown to provide more accurate results than the

Table 2 Estimated real-time CPU usage for each ODF,
shown as a percentage of the maximum number of
FLOPS that can be achieved on two processors: an Intel
Core 2 Duo and an Analog Devices ADSP-TS201S
(TigerSHARC)

Core 2 Duo (%) ADSP-TS201S (%)

ODFE 0.002 0.015

ODFSD 0.034 0.211

ODFCD 0.065 0.402

ODFELP 0.003 0.020

ODFSDLP 0.970 6.033

ODFCDLP 0.972 6.047

ODFPAD 0.043 0.265
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well-established complex domain method with notice-
ably lower computation requirements, and as it inte-
grates seamlessly with the sinusoidal modelling process,
it can be added to the existing sinusoidal modelling sys-
tems at very little cost.

Algorithm 1
Real-time peak picking (one buffer delay).
Input: ODF value
Output: Whether or not previous ODF value repre-

sents a peak (Boolean)
IsOnset ¬ False
if PreviousValue >CurrentValue and PreviousValue

>TwoValuesAgo then

if PreviousValue >CalculateThreshold() then
IsOnset ¬ True

end

end
UpdatePreviousValues()
return IsOnset

Algorithm 2
The Burg method.
f ¬ x
b ¬ x
a ¬ x
for m ¬ 0 to p - 1 do

fp ¬ f without its first element
bp ¬ b without its last element
k ¬ -2bp · fp /(fp · fp + fp · fp)
f ¬ fp + k · bp
b ¬ bp + k · fp
a ¬ (a[0], a[1], ..., a[m], 0) + k (0, a[m], a[m - 1], ...,
a[0])

end
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