1,691 research outputs found

    Consideration for care for your patient with cerebral palsy

    Get PDF
    Cerebral palsy (CP) is a common developmental neurological disorder affecting about 2-3 children out of 1,000. CP is the result of infant brain damage or abnormal development resulting in impaired muscle control, coordination, tone, reflex, posture, and balance. These patients are unable to control motor movements of their muscles of mastication and facial expression, causing excessive drooling, clenching, bruxism, and other oral health-related issues. This lack of motor control affects their ability to swallow and often limits these patients to a liquid diet. This can lead to vitamin deficiencies and result in further developmental problems. As an example, a deficiency in vitamin D may lead to osteoporosis, which manifests in the oral cavity as periodontal disease. Even into adulthood, these individuals are often reliant on the care of others. It becomes the caregiver’s responsibility to ensure the individual with cerebral palsy is receiving consistent and effective oral hygiene, and to monitor the oral tissues for signs of disease or injury. The researchers reviewed primary and secondary literature published after 2014 on the subjects of cerebral palsy, general health considerations, and oral care. The aim of this investigation focuses on unique issues faced by patients with cerebral palsy, and how to effectively educate caregivers on risks and proper techniques for providing oral hygiene to these individuals.https://scholarscompass.vcu.edu/denh_student/1001/thumbnail.jp

    Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics

    Full text link
    A phase-stabilized femtosecond laser comb is directly used for high-resolution spectroscopy and absolute optical frequency measurements of one- and two-photon transitions in laser-cooled \rb atoms. Absolute atomic transition frequencies, such as the 5S1/2_{1/2} F=2 \ra 7S1/2_{1/2} F"=2 two-photon resonance measured at 788 794 768 921(44) kHz, are determined without \textit{a priori} knowledge about their values. Detailed dynamics of population transfer driven by a sequence of pulses are uncovered and taken into account for the measurement of the 5P states via resonantly enhanced two-photon transitions.Comment: 5 pages, 4 figures, submitte

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S33Pn3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Light anti-nuclei production in pp collisions at s\sqrt{s}=7 and 14 TeV

    Full text link
    A dynamically constrained coalescence model based on the phase space quantization and classical limit method was proposed to investigate the production of light nuclei (anti-nuclei) in non-single diffractive (NSD) pp collisions at s\sqrt{s}=7 and 14 TeV. This calculation was based on the final hadronic state in the PYTHIA and PACIAE model simulations, the event sample consisted of 1.2×108\times 10^8 events in both simulations. The PACIAE model calculated Dˉ\bar D yield of 6.247×105\times 10^{-5} in NSD pp collisions at s\sqrt{s}=7 TeV is well comparing with the ALICE rough datum of 5.456×105\times 10^{-5}. It indicated the reliability of proposed method in some extent. The yield, transverse momentum distribution, and rapidity distribution of the Dˉ\bar D, 3Heˉ^3{\bar{He}}, and Λˉ3Hˉ_{\bar\Lambda} ^3{\bar H} in NSD pp collisions at s\sqrt{s} =7 and 14 TeV were predicted by PACIAE and PYTHIA model simulations. The yield resulted from PACIAE model simulations is larger than the one from PYTHIA model. This might reflect the role played by the parton and hadron rescatterings.Comment: 5 pages, 2 figure

    Velocity-selective direct frequency-comb spectroscopy of atomic vapors

    Get PDF
    We present an experimental and theoretical investigation of two-photon direct frequency-comb spectroscopy performed through velocity-selective excitation. In particular, we explore the effect of repetition rate on the 5S1/25D3/2,5/2\textrm{5S}_{1/2}\rightarrow \textrm{5D}_{3/2, 5/2} two-photon transitions excited in a rubidium atomic vapor cell. The transitions occur via step-wise excitation through the 5P1/2,3/2\textrm{5P}_{1/2, 3/2} states by use of the direct output of an optical frequency comb. Experiments were performed with two different frequency combs, one with a repetition rate of 925\approx 925 MHz and one with a repetition rate of 250\approx 250 MHz. The experimental spectra are compared to each other and to a theoretical model.Comment: 10 pages, 7 figure

    Optomechanical scheme for the detection of weak impulsive forces

    Get PDF
    We show that a cooling scheme and an appropriate quantum nonstationary strategy can be used to improve the signal to noise ratio for the optomechanical detection of weak impulsive forces.Comment: 4 pages, Revtex, 1 figur

    The ESA-NASA CHOICE Study: Winterover at Concordia Station, Interior Antarctica, A Potential Analog for Spaceflight-Associated Immune Dysregulation

    Get PDF
    For ground-based space physiological research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a superior ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assesses innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. Initial data obtained from the first study deployment (2009 mission; 'n' of 6) will be presented, and logistical challenges regarding analog usage for biological studies will also be discussed. The total WBC increased, and alterations in some peripheral leukocyte populations were observed during winterover at Concordia Station. Percentages of lymphocytes and monocytes increased, and levels of senescent CD8+ T cells were increased during deployment. Transient increases in constitutively activated T cell subsets were observed, at mission time points associated with endemic disease outbreaks. T cell function (early blastogenesis response) was increased near the entry/exit deployment phases, and production of most measured cytokines increased during deployment. Salivary cortisol demonstrated high variability during winterover, but was generally increased. A 2-point circadian rhythm of cortisol measurement (morning/evening) was unaltered during winterover. Perceived stress was mildly elevated during winterover. Other measures, including in-vitro DTH assessment, viral specific T cell number/function and latent herpesvirus reactivation have not yet been completed for the 2009 winterover subjects. Based on the preliminary data, alterations in immune cell distribution and function appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Based on the initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune changes

    Quantum Dissipative Dynamics of the Magnetic Resonance Force Microscope in the Single-Spin Detection Limit

    Full text link
    We study a model of a magnetic resonance force microscope (MRFM) based on the cyclic adiabatic inversion technique as a high-resolution tool to detect single electron spins. We investigate the quantum dynamics of spin and cantilever in the presence of coupling to an environment. To obtain the reduced dynamics of the combined system of spin and cantilever, we use the Feynman-Vernon influence functional and get results valid at any temperature as well as at arbitrary system-bath coupling strength. We propose that the MRFM can be used as a quantum measurement device, i.e., not only to detect the modulus of the spin but also its direction

    An all silicon quantum computer

    Get PDF
    A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement, RF control, and long decoherence times, but it allows for more qubits and improved initialization.Comment: ReVTeX 4, 5 pages, 2 figure
    corecore