41 research outputs found

    Brief communication : subglacial lake drainage beneath Isunguata Sermia, west Greenland : geomorphic and ice dynamic effects

    Get PDF
    We report three active subglacial lakes within 2 km of the lateral margin of Isunguata Sermia, West Greenland, identified by differencing time-stamped ArcticDEM strips. Each lake underwent one drainage–refill event between 2009 and 2017, with two lakes draining in < 1 month in August 2014 and August 2015. The 2015 drainage caused a ∼ 1-month down-glacier slowdown in ice flow and flooded the foreland, aggrading the proglacial channel by 8 m. The proglacial flooding confirms the ice-surface elevation anomalies as subglacial water bodies and demonstrates how their drainage can significantly modify proglacial environments. These subglacial lakes offer accessible targets for geophysical investigations and exploration

    3D Morphometries of Eskers on Mars, and Comparisons to Eskers in Finland

    Get PDF
    International audienceIntroduction: We present new, high-resolution measurements of the 3D morphometries of eskers associated with debris-covered glaciers in the Phlegra Mon-tes [1] and NW Tempe Terra [2] regions of Mars' northern mid-latitudes. We compare them with the ancient south polar 'Dorsa Argentea' eskers on Mars [3], and first large database (n > 20,000) of 3D morphome-tries of terrestrial eskers, from SW Finland [4]. Eskers are ridges of glaciofluvial sediment deposited by meltwater flowing through tunnels within or beneath glaciers. They are vital tools for reconstructing the dynamics, extent, and environmental drivers of wet-based glaciation on Earth and Mars. For example, reconstructions of Mars' climate conditions at the Noa-chian-Hesperian transition [e.g., 5] have relied heavily upon insights from the Dorsa Argentea eskers [e.g., 3], which record basal melting of a large south polar ice sheet ~3.5 Ga. Morphometric studies of candidate eskers on Mars are vital both for testing hypotheses of their origins as eskers [e.g., 3], and for informing insights into the magnitude and dynamics of meltwater flows that formed them [e.g., 5-6]. Previously, such work has been limited by a lack of large-scale surveys of the 3D morphometries of eskers on Earth, to which the martian landforms can be compared. A new database comprising >20 000 measurements of 3D esker morphometries from SW Finland provides new opportunities for such-comparisons, which we exploit in this study [4]. Methods: We used 1-2 m/pixel digital elevation models generated from High Resolution Imaging Science Experiment (HiRISE) images to measure esker heights (H) and widths (W) from cross-sectional tran-sects spaced at 10 and 20 m intervals along the Phlegra Montes and NW Tempe Terra eskers, respectively (fol-lowing [3]). We calculated average slopes across cross-sectional transects (θ) as: tan −1 (H/0.5W). We classified transects into sharp-, multi-, and round-crested morphologies according to the scheme of [6]. The NW Tempe Terra esker comprises two 'stacked' esker ridges (see [7], this conference) which we treat separately in the present study. Storrar and Jones [4] obtained similar H, W, and θ measurements at 10 m intervals along ~70 km of Qua-ternary-aged eskers in SW Finland, using 2 m/pixel elevation data from airborne LiDAR

    Multi-Phase Sedment-Discharge Dynamics of Subglacial Drainage Recorded by a Glacier-Linked Esker in NW Tempe Terra, Mars

    Get PDF
    International audienceIntroduction: Our recent discoveries of eskers associated with 110-150 Myr old debris-covered glaciers in Phlegra Montes [1] and NW Tempe Terra [2], Mars, indicate that localised wet-based glaciation has occurred in at least two locations during the late Amazonian , despite cold climate conditions. Eskers are sedi-mentary ridges deposited by meltwater flowing through drainage tunnels within or beneath glaciers. In this study, we use new 3D measurements of the NW Tempe Terra esker (46.17 °N, 83.06 °W) to develop a conceptual model for the sediment-discharge dynamics of the esker-forming drainage episode(s). Methods: Following [3], we used a 2 m/pixel digital elevation model derived from High Resolution Imaging Science Experiment (HiRISE) images to measure ridge height (H) and width (W) every ~20 m along the esker. We exclude ridge portions obscured by the parent glacier (Fig 1), as well as transitions between morphological zones. Results: A scatterplot of the raw height and width measurements (Fig 2A) has multiple limbs which correspond to subzones of the esker with common morphological characteristics (Fig 1)

    Brief Communication: Outburst floods triggered by periodic drainage of subglacial lakes, Isunguata Sermia, West Greenland

    Get PDF
    We report three active subglacial lakes within 2 km of the lateral margin of Isunguata Sermia, West Greenland, identified by differencing time-stamped ArcticDEM strips. Each lake underwent one drainage-refill event between 2009 and 2017, with two lakes draining in < 1 month during August 2014 and August 2015, and all three characterised by 2–3-year refill periods. The 2015 drainage flooded the foreland aggrading 8 m of the proglacial channel, confirming the ice-surface elevation anomalies as subglacial water bodies and demonstrating how subglacial lake drainages can significantly modify proglacial environments. These subglacial lakes offer accessible targets for future geophysical investigations and exploration

    Temperature-controlled laminar airflow in severe asthma for exacerbation reduction (The LASER Trial): study protocol for a randomised controlled trial

    Get PDF
    BackgroundAsthma affects more than 5 million patients in the United Kingdom. Nearly 500,000 of these patients have severe asthma with severe symptoms and frequent exacerbations that are inadequately controlled with available treatments. The burden of severe asthma on the NHS is enormous, accounting for 80 % of the total asthma cost (£1 billion), with frequent exacerbations and expensive medications generating much of this cost.Of those patients with severe asthma, 70 % are sensitised to indoor aeroallergens, and the level of exposure to allergens determines the symptoms; patients exposed to high levels are therefore most at risk of exacerbations and hospital admissions.The LASER trial aims to assess whether a new treatment, temperature controlled laminar airflow (TLA) delivered by the Airsonett™ device, can reduce the frequency of exacerbations in patients with severe allergic asthma by reducing exposure to aeroallergens overnight.MethodsThis multicentre study is a placebo-controlled, blinded, randomised controlled, parallel group trial. A total of 222 patients with a new or current diagnosis of severe allergic asthma will be assigned with a random element in a 1:1 ratio to receive either an active device for one year or a placebo device. The primary outcome is the frequency of severe asthma exacerbations occurring over a 12-month period, defined in accordance with the American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines. Secondary outcomes include changes in asthma control, lung function, asthma-specific and global quality of life for participants and their carers, adherence to intervention, healthcare resource use and costs, and cost-effectiveness. Qualitative interviews will be conducted to elicit participant’s and their partner’s perceptions of the treatment.DiscussionEffective measures of allergen avoidance have, to date, proved elusive. The LASER trial aims to address this. The study will ascertain whether home-based nocturnal TLA usage over a 12-month period can reduce the frequency of exacerbations and improve asthma control and quality of life as compared to placebo, whilst being cost-effective and acceptable to adults with poorly controlled, severe allergic asthma. The results of this study will be widely applicable to the many patients with allergic asthma both in the UK and internationally.Trial registrationCurrent controlled trials ISRCTN46346208 (Date assigned 22 January 2014)

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore