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Abstract (100 words) 

We report three active subglacial lakes within 2 km of the lateral margin of Isunguata Sermia, West Greenland, 
identified by differencing time-stamped ArcticDEM strips. Each lake underwent one drainage-refill event between 
2009 and 2017, with two lakes draining in <1 month during August 2014 and August 2015, and all three 15 

characterised by 2-3-year refill periods. The 2015 drainage flooded the foreland aggrading 8 m of the proglacial 
channel, confirming the ice-surface elevation anomalies as subglacial water bodies and demonstrating how 
subglacial lake drainages can significantly modify proglacial environments. These subglacial lakes offer 
accessible targets for future geophysical investigations and exploration.   

 20 

1. Introduction 

Meltwater beneath the Greenland Ice Sheet is sourced from geothermal and frictional melting, and via the input 
of surface meltwater through englacial pathways. This meltwater drains towards the ice sheet margin through a 
complex network of inefficient and efficient drainage routes (Davison et al., 2019). Spatial and temporal variations 
in drainage structure are controlled by the hydraulic gradient and meltwater flux. Steeper hydraulic gradients and 25 

higher meltwater fluxes close to the ice margin lead to greater ice melt rates and promote the formation of efficient 
channels, which can extend up to 40 km inland and evolve on seasonal timescales in response to surface meltwater 
inputs (Chandler et al., 2013). Shallow hydraulic gradients and lower meltwater fluxes dominated by subglacial 
meltwater sources tend to be associated with more inefficient drainage configurations further inland (Doyle et al., 
2014).   30 

Storage of water in firn (Forster et al., 2013), damaged englacial ice (Kendrick et al., 2018) and both supraglacial 
(Selmes et al., 2011) and subglacial lakes (Palmer et al., 2013; Oswald et al., 2018; Bowling et al., 2019) can 
delay the drainage of meltwater through the ice sheet to the ocean, while the rapid drainage of stored water can 
overwhelm the drainage system and perturb ice flow (e.g. Das et al., 2008). Storage and drainage of supraglacial 
lakes have been well-documented (e.g. Selmes et al., 2011), but the volume of water stored subglacially, and the 35 

lakes’ residence times and wider influence on the subglacial hydrological system and ice flow is poorly 
understood. Although expected to be a less significant component of the hydrological system compared with 
Antarctica (e.g. Siegfried & Fricker, 2018) due to steeper hydraulic gradients, dominance of surface inputs and 
more efficient subglacial water routing, 1000s of subglacial lakes have been predicted and over 50 identified 
beneath the Greenland Ice Sheet (Livingstone et al., 2013; Bowling et al., 2019). This includes stable lakes above 40 

the Equilibrium Line Altitude (ELA) but away from the interior, hydrologically active lakes near the ELA 
recharged by surface meltwater, and small seasonally active lakes below the ELA which form during winter and 
drain during the melt season (Palmer et al., 2013, 2015; Howat et al., 2013; Willis et al., 2015; Chu et al., 2016; 
Oswald et al., 2018; Bowling et al., 2019).  
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Whilst seasonal water storage is thought to be common below the ELA (e.g. Chu et al., 2016; Kendrick et al., 45 

2018), longer term subglacial lake storage is thought unlikely due to the development of efficient channels and 
associated increase in hydrological connectivity each melt season. In this paper we acquired multi-temporal 
ArcticDEM Digital Surface Models (DSMs) (Noh & Howat, 2015) and Landsat 7 and 8 satellite imagery between 
2009 and 2017 to identify three active subglacial lakes on a reverse bed-slope beneath Isunguata Sermia, West 
Greenland (67°10’ N, 50°12’W) (Fig. 1). The ArcticDEM DSMs were generated from high-resolution satellite 50 

imagery and have a spatial resolution of 2 m and internal accuracy of 0.2 m. Each of the 52 DSMs acquired over 
the time period were corrected against filtered IceSAT altimetry data using the metadata provided (Dai & Howat, 
2017). Change in Normalised Difference Water Index (NDWI) to identify flooding of the proglacial zone was 
calculated using top-of-atmosphere corrected Landsat green (band 3) and near-infrared (band 5) bands and the 
formula: NDWI = (band 3 – band 5)/(band 3 + band 5).       55 

 

2. Observations 

Yearly ice-surface elevation change was determined from 2009 to 2017 by differencing the multi-temporal 
ArcticDEM DSMs. This revealed three distinctive quasi-circular regions, hereafter referred to as ‘anomalies’, all 
within 2 km of the lateral margin of Isunguata Sermia, that were characterised by periods of subsidence followed 60 

by uplift (Fig. 1). Timeseries of relative elevation change for each anomaly were calculated from the DSMs by 
subtracting the mean ice-surface elevation of the anomaly from the mean elevation of a 500 m buffer around it 
(Fig. 2). This approach was used to isolate the dynamic effect and to remove the influence of systematic vertical 
and horizontal offsets (of up to 3-5 m) between DSMs. Anomaly 1, located <5 km from the terminus of Isunguata 
Sermia, formed a 0.93 km2 depression between 19th August 2010 and 3rd August 2011 with a mean depth of 5 m 65 

and maximum depth of 17 m. The ice-surface then rose 1 m by November 2011 before recovering back to its 2010 
elevation by February 2013. Anomaly 2, about 1 km further up ice, formed a 0.88 km2 depression between 2nd 

August 2015 and 21st September 2015, with a mean depth of 13 m and maximum depth of 30 m. It has since risen 
9 m between 2015 and 2017. Anomaly 3, which is just up-ice from anomaly 2 and ~9 km from the terminus, 
formed a 0.67 km2 depression between 17th August 2014 and 19th September 2014, with a mean depth of 4 m and 70 

maximum depth of 14 m, before the surface rose 3 m between 2014 and 2017. Surface structural features indicative 
of localised ice fracture such as crescentic crevasses are not apparent in any of the depressions.   

Landsat 8 OLI satellite images acquired before and after the 2015 ice-surface subsidence (anomaly 2) reveal a 
major change in the 1.8 km wide proglacial braided river system (Fig. 3). On 15th July 2015 the river plain is 
characterised by a single channel emanating from the front of Isunguata Sermia, that then bifurcates down-river 75 

into multiple braids and intervening bars (Fig. 3a). Dry areas above the water level are demarcated by a sharp 
change in colour, with wetted areas darker and dry areas lighter. Using this demarcation, a major flood plain 
directly in-front of the main portal, which causes the river emanating from the glacier to divert northwards and 
then westwards, is identified. On the basis of a qualitative change from light to dark, on the 25th August 2015, and 
a quantified positive change in NDWI of up to +0.23 (mean: +0.09) between July and August, the dry areas (bars 80 

and floodplain) became inundated by water and the braided river system re-organised (Fig. 3b-c). Differencing 
ArcticDEM DSMs of the proglacial area before (4th May 2015) and after (21st September 2015) the ice-surface 
elevation change associated with anomaly 2 reveals 3 m of mean net sediment aggradation across a 5 km stretch 
of the main proglacial channel (Fig. 3d). Aggradation was up to 8 m close to the outlet and declined to <1 m 5 km 
from the glacier terminus.         85 

 

3. Discussion 

We identify three anomalies on Isunguata Sermia characterised by localised ice-surface elevation changes, which 
we interpret as subglacial lake drainage and filling (Fig. 1). Confirmation of a subglacial lake origin is provided 
by flooding of the proglacial outwash plain in August 2015, which coincided with the timing of ice-surface 90 

elevation anomaly 2, evidencing the release of meltwater (Fig. 3).  This inundation (wetting) of the flood plain is 
not replicated at the nearby Leverett-Russell Glacier (Fig. 3b), ruling out a common external forcing (e.g. heavy 
rainfall). All three subglacial lakes are located under 325-400 m thick (Lindbäck et al., 2014), warm-based ice on 
a reverse gradient slope (15 m per km); the reverse slope may be trapping the water causing the lakes to form. 
Although subglacial hydrological analysis (e.g. Lindbäck et al., 2014; Chu et al., 2016) does not produce hydraulic 95 
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minima in the locations where we identify lakes, this may be a result of the limited and relatively poor-quality 
airborne radar ice-thickness measurements across the thin, near-marginal area of Isunguata Sermia.  

The three subglacial lakes each underwent one drainage event over the 8-year data period (Fig. 2). Differencing 
of the DSMs either side of the drainage events, over the area of the ice-surface anomalies, gives total lake volume 
changes of 6.5 ± 0.52 x 106 m3, 1.3 ± 0.05 x 107 m3 and 3.5 ± 0.38 x 106 m3 for anomalies 1-3 respectively. 100 

Drainage of Subglacial Lake 2 in 2015 and Lake 3 in 2014 were both triggered in August and drained in <1 month, 
which is consistent with other larger subglacial lake drainage events identified in Greenland (Howat et al., 2014; 
Palmer et al., 2015; Willis et al., 2015), but contrasts with the longer (months to years) drainage period of those 
in Antarctica (e.g. Siegfried & Fricker, 2018). If the vertical displacement of the ice-surface is assumed to be 
equivalent to the depth of the subglacial lake, this gives a mean minimum discharge of 6.5 m3 s-1 for Subglacial 105 

Lake 2, which is the largest and best-constrained by available DSM and satellite imagery in this study.  

Lake recharge is on the scale of a few years, and it is noticeable that the largest subglacial lake drainage event 
(Lake 2) subsequently refilled at the fastest rate (~5 m uplift yr-1), while the smallest drainage event (Lake 3) is 
filling at the slowest rate (~1 m uplift yr-1). The lakes are at the lower end of the ablation zone and therefore likely 
to be dominated by upstream surface meltwater inputs and the seasonal melt signal (Davison et al., 2019).  Despite 110 

this, lake drainage is not associated with high-melt years (e.g. the 2011 drainage event coincided with a low melt 
year) and recharge rates were similar over winter and summer. For example, the ice surface above Lake 2 rose ~3 
m over a 5-month period between September 2015 and February 2016 immediately following drainage, but then 
rose an equivalent height over the next 6-month period between February and August 2016.  This may be partially 
due to faster initial recovery, but also implies that the lake is able to capture significant volumes of water over 115 

winter. All three lakes exhibited quiescent periods of extended high-stand, which might occur when water flow 
into the lake is balanced by outflow, and suggests an external threshold controlling lake drainage initiation.  

Although in close proximity, drainage of an upstream lake does not trigger a cascade of drainage in downstream 
lakes. In addition, the filling of Lake 3 did not limit recharge of Lake 2 just downstream (Fig. 2). This suggests 
that the lakes are not hydraulically well connected, consistent with subglacial hydraulic modelling indicating the 120 

main subglacial drainage axis is just to the north of the two upstream subglacial lakes (Fig. 3a). Both the 2014 and 
2015 drainage events were initiated in August at a time when drainage system connectivity is envisaged to be high 
and water preferentially drains towards efficient channels along a hydraulic gradient (Davison et al., 2019). Thus, 
rapid drainage could be a response to lakes infrequently connecting with the main subglacial channel.       

The August 2015 subglacial lake drainage event flooded the foreland and resulted in substantial net ice-proximal 125 

sediment aggradation (7.5 x 106 m3) of the outwash plain (Fig. 3). Deposition was greatest in the main channel, 
with up to 8 m of net aggradation close to the outlet diminishing to <1 m 5 km from the terminus. This near-
margin pattern of aggradation is consistent with the geomorphic impact of jökulhlaups observed in Iceland (e.g. 
Dunning et al., 2013) and demonstrates the potential of episodic subglacial lake drainage events to erode the 
subglacial bed and modify the proglacial environment. Given the subglacial lake is located just 8 km from the 130 

glacier terminus the subglacial erosion necessary to produce the sediment volume deposited on the foreland is 
equivalent to a 10 m deep and 100 m wide channel cut into the bed. The restricted pattern of deposition at the 
southern end of the glacier terminus suggests that the subglacial drainage event was at least partially focused into 
a channel rather than an unconstrained sheet flood.   

Although the presence or absence of sediments in these lakes has yet to be tested, these three subglacial lakes 135 

present an extremely accessible target for future geophysical characterisation and active lake exploration. Ice-
surface elevation changes suggest the lakes are at least 14-30 m deep and have minimum volumes of 3.5-13 x 106 
m3. Ice cover is relatively thin (325-450 m) and the lakes are clustered and in close proximity to the ice margin 
(<2 km), road (<5 km) and key logistical support including a major airport (Kangerlussuaq). Key questions that 
could be addressed through detailed investigation of these lakes include: what triggers subglacial lake drainage 140 

and how does drainage evolve downstream? How do lakes interact with other components of the subglacial 
drainage system? What geomorphological and sedimentological signatures of similar drainage events might be 
recorded in the proglacial area? 

 

4. Conclusions 145 
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Using multi-temporal ArcticDEM DSM and satellite imagery, we identify three active subglacial lakes <10 km 
from the terminus of Isunguata Sermia. The lakes are characterised by periods of relative inactivity punctuated by 
rapid drainage (<1 month) and then slow recharge (a few years). The most recent drainage event in 2015 flooded 
the outwash plain resulting in net ice-marginal sediment aggradation that was greatest closest to the outflow portal 
and thinned downstream. This work demonstrates the potential for subglacial lakes to exist in the lower ablation 150 

zone close to the ice margin, where subglacial hydrology is dominated by surface seasonal meltwater inputs and 
efficient channelized drainage. The lakes appear to be only weakly connected to the main subglacial channel axis 
and drainage may be controlled by the ability of this channel to occasionally capture water from its surroundings. 
The 2015 subglacial lake drainage event had a significant subglacial and proglacial geomorphic impact, including 
substantial erosion of sediment from beneath Isunguata Sermia and substantial aggradation of sediment in the 155 

proglacial outwash plain close to the terminus. Detailed geophysical studies across and downstream of these lakes 
would provide insight into the conditions causing the lakes to form and drain, the resultant geomorphic imprint 
and the depositional archive of these lake environments. Crucially, these subglacial lakes may be the most 
accessible in the world due to their setting beneath thin ice close to the lateral margin of the glacier and the existing 
infrastructure and logistical set-up of the region.  160 
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Figure 1: Yearly anomaly plots of ice-surface elevation change from 2010-2017 based on the timestamped 
ArcticDEM. Black outlines and numbers (1-3) reference the location of three identified subglacial lakes. 
Anomalies <5 m have been removed. The background image is an ArcticDEM DSM hillshade from 2017. Note 230 

there were no data available in 2012. 
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Figure 2: Timeseries of mean relative elevation change from 2009-2017 for the three subglacial lakes identified 
in Figure 1 (lake numbers are the same). Relative elevation change is calculated by taking the mean subglacial 235 

lake elevation anomaly from the mean elevation of a 500 m buffer surrounding the lake. Error bars represent the 
internal accuracy of the ArcticDEM (±0.2 m). Observation of the Landsat archive indicates that surface meltwater 
does not pond in the collapse basins following lake drainage, likely because of the heavily crevassed ice surface. 
Calculated mean relative elevation change is therefore a measure of ice-surface elevation change alone.      

 240 

 

 

  

https://doi.org/10.5194/tc-2019-137

Preprint. Discussion started: 3 July 2019

c© Author(s) 2019. CC BY 4.0 License.



8 

 

 

Figure 3: Proglacial signature of the 2015 subglacial lake drainage event. A and B are True Colour Landsat 8 245 

images of Isunguata Sermia and the foreland before (15th July 2015) and after (25th August 2015) the drainage 
event. The blue/purple coloured line in A represents the predicted subglacial drainage routeway. IS = Isunguata 
Sermia. Note how the proglacial river changes its course and the whole floodplain becomes inundated resulting 
in a change of colour. This is not replicated at Leverett-Russell Glacier, ruling out a common external forcing 
(e.g. heavy rainfall). C is change in Normalised Difference Water Index (NDWI) between 7th July and 25th August 250 

2015. Note the wetting (positive values) of the previous dry regions (bars and floodplain). D reveals the change 
in elevation from two ArcticDEM DSM tiles (co-registered to remove systematic vertical offsets using the mean 
vertical difference between common bedrock surfaces). There is up to 8 m of aggradation close to the glacier 
portal which declines with distance from the outlet. The dotted line demarcates the mapped wetted area in panel 
A.  255 
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