255 research outputs found

    Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province

    Get PDF
    The Mesozoic Era featured emplacement of a number of Large Igneous Provinces (LIPs), formed by the outpouring of millions of cubic kilometres of basaltic magma. The radiometric ages of several Mesozoic LIPs coincide with the dates of Oceanic Anoxic Events (OAEs). As a result of these coincidences, a causal link has been suggested, but never conclusively proven. This study explores the use of mercury as a possible direct link between the Karoo-Ferrar LIP and the coeval Toarcian OAE (T-OAE). Mercury is emitted to the atmosphere as a trace constituent of volcanic gas, and may be distributed globally before being deposited in sediments. Modern marine deposits show a strong linear correlation between mercury and organic-matter content. Results presented here indicate departures from such a simple linear relationship in sediments deposited during the T-OAE, and also during the Pliensbachian-Toarcian transition (an event that saw elevated benthic extinctions and carbon-cycle perturbations prior to the T-OAE). A number of depositional settings illustrate an increased mercury concentration in sediments that record one or both events, suggesting a rise in the depositional flux of this element. Complications to this relationship may arise from very organic-rich sediments potentially overprinting any Hg/TOC signal, whereas environments preserving negligible organic matter may leave no record of mercury deposition. However, the global distribution of coevally elevated Hg-rich levels suggests enhanced atmospheric mercury availability during the Early Toarcian, potentially aided by the apparent affinity of Hg for terrestrial organic matter, although the relative importance of aquatic vs terrestrial fixation of Hg in governing these enrichments remains uncertain. A perturbation in atmospheric Hg is most easily explained by enhanced volcanic output. It is suggested that extrusive igneous activity caused increased mercury flux to the Early Toarcian sedimentary realm, supporting the potential of this element as a proxy for ancient volcanism. This interpretation is consistent with a relationship between LIP formation and a perturbed carbon cycle during the Pliensbachian-Toarcian transition and T-OAE. The recording of these two distinct Hg excursions may also indicate that the Karoo-Ferrar LIP released volatiles in temporally distinct episodes, due either to multiple phases of magmatic emplacement or sporadic release of thermogenic gaseous products from intrusion of igneous material into volatile-rich lithologies.We acknowledge NERC (NE/G01700X/1) and the Leverhulme Trust for funding

    Increasing incidence of childhood tumours of the central nervous system in Denmark, 1980–1996

    Get PDF
    The registered incidence rate of childhood central nervous system (CNS) tumours has increased in several countries. It is uncertain whether these increases are biologically real or owing to improved diagnostic methods. We explored the medical records of 626 CNS tumours diagnosed in Danish children between 1980 and 1996. Population-based registers were used to extract data on mortality and background population. Temporal patterns were analysed by regression techniques. Most tumours were verified by computed tomography (78%) or magnetic resonance imaging (14%). Overall, the incidence rate increased by 2.9% per year (95% confidence interval (CI): 1.3;4.5) and the mortality rate increased by 1.4% per year (95% CI: −0.4;3.3). Among children aged 0–4 years, the survival rate after diagnosis remained almost unchanged, whereas among children aged 5–14 years, the 10-year survival rate improved from 59 to 74%. These data suggest that the incidence rate of CNS tumours among Danish children has truly increased, although alternative explanations cannot be excluded

    Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation

    Get PDF
    Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene. Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD

    Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs

    Get PDF
    We discuss the impact of Population II and Globular Cluster (GCs) stars on the derivation of the age of the Universe, and on the study of the formation and early evolution of galaxies, our own in particular. The long-standing problem of the actual distance scale to Population II stars and GCs is addressed, and a variety of different methods commonly used to derive distances to Population II stars are briefly reviewed. Emphasis is given to the discussion of distances and ages for GCs derived using Hipparcos parallaxes of local subdwarfs. Results obtained by different authors are slightly different, depending on different assumptions about metallicity scale, reddenings, and corrections for undetected binaries. These and other uncertainties present in the method are discussed. Finally, we outline progress expected in the near future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22 pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty LaTeX style file, enclose

    The impact of comorbidity and stage on ovarian cancer mortality: A nationwide Danish cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of ovarian cancer increases sharply with age, and many elderly patients have coexisting diseases. If patients with comorbidities are diagnosed with advanced stages, this would explain the poor survival observed among ovarian cancer patients with severe comorbidity. Our aims were to examine the prevalence of comorbidity according to stage of cancer at diagnosis, to estimate the impact of comorbidity on survival, and to examine whether the impact of comorbidity on survival varies by stage.</p> <p>Methods</p> <p>From the Danish Cancer Registry we identified 5,213 patients (> 15 years old) with ovarian cancer diagnosed from 1995 to 2003. We obtained information on comorbidities from the Danish National Hospital Discharge Registry. Vital status was determined through linkage to the Civil Registration System. We estimated the prevalence of comorbidity by stage and computed absolute survival and relative mortality rate ratios (MRRs) by comorbidity level (Charlson Index score 0, 1–2, 3+), using patients with Charlson Index score 0 as the reference group. We then stratified by stage and computed the absolute survival and MRRs according to comorbidity level, using patients with Charlson score 0 and localized tumour/FIGO I as the reference group. We adjusted for age and calendar time.</p> <p>Results</p> <p>Comorbidity was more common among patients with an advanced stage of cancer. One- and five-year survival was higher in patients without comorbidity than in patients with registered comorbidity. After adjustment for age and calendar time, one-year MRRs declined from 1.8 to 1.4 and from 2.7 to 2.0, for patients with Charlson scores 1–2 and 3+, respectively. After adjustment for stage, the MRRs further declined to 1.3 and 1.8, respectively. Five-year MRRs declined similarly after adjustment for age, calendar time, and stage. The impact of severe comorbidity on mortality varied by stage, particularly among patients with tumours with regional spread/FIGO-stages II and III.</p> <p>Conclusion</p> <p>The presence of severe comorbidity was associated with an advanced stage of ovarian cancer. Mortality was higher among patients with comorbidities and the impact of comorbidity varied by stage.</p

    The influence of cardiovascular morbidity on the prognosis in prostate cancer. Experience from a 12-year nationwide Danish population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the impact of preexisting ischemic heart disease (IHD) and stroke on overall survival in prostate cancer patients.</p> <p>Methods</p> <p>We conducted a cohort study of patients with incident prostate cancer registered in the Danish Cancer Registry from 1997 through 2008. We identified patients diagnosed with IHD or stroke prior to the date of prostate cancer diagnosis in the Danish National Patient Registry. We constructed Kaplan-Meier curves to analyze time to death and Cox regression was used to estimate hazard ratios (HRs) to compare mortality rates by preexisting IHD or stroke status, adjusting for age, stage, comorbidity, and calendar period.</p> <p>Results</p> <p>Of 30,721 prostate cancer patients, 4,276 (14%) had preexisting IHD and 1,331 (4%) preexisting stroke. Crude 1- and 5-year survival rates were 85% and 44% in men without preexisting IHD or stroke, 81% and 36% in men with preexisting IHD, and 78% and 27% in men with preexisting stroke. Adjusted HRs were 1.05 (95% CI 1.00-1.10) for patients with IHD and 1.20 (95% CI 1.12-1.30) for patients with stroke compared with patients without preexisting IHD or stroke.</p> <p>Conclusions</p> <p>Preexisting IHD had minimal impact on mortality in prostate cancer patients, whereas overall mortality was 20% higher in prostate cancer patients with preexisting stroke compared to those without IHD or stroke. These results highlight the importance of differentiating between various comorbidities.</p

    De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus

    Get PDF
    Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10−7), SMARCC1 (p = 8.15 × 10−10), and PTCH1 (p = 1.06 × 10−6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10−4). Together, these probands account for ∼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications

    Effect of vitamin D on bone mineral density of elderly patients with osteoporosis responding poorly to bisphosphonates

    Get PDF
    BACKGROUND: Bisphosphonates are indicated in the prevention and treatment of osteoporosis. However, bone mineral density (BMD) continues to decline in up to 15% of bisphosphonate users. While randomized trials have evaluated the efficacy of concurrent bisphosphonates and vitamin D, the incremental benefit of vitamin D remains uncertain. METHODS: Using data from the Canadian Database of Osteoporosis and Osteopenia (CANDOO), we performed a 2-year observational cohort study. At baseline, all patients were prescribed a bisphosphonate and counseled on vitamin D supplementation. After one year, patients were divided into two groups based on their response to bisphosphonate treatment. Non-responders were prescribed vitamin D 1000 IU daily. Responders continued to receive counseling on vitamin D. RESULTS: Of 449 patients identified, 159 were non-responders to bisphosphonates. 94% of patients were women. The mean age of the entire cohort was 74.6 years (standard deviation = 5.6 years). In the cohort of non-responders, BMD at the lumbar spine increased 2.19% (p < 0.001) the year after vitamin D was prescribed compared to a decrease of 0.55% (p = 0.36) the year before. In the cohort of responders, lumbar spine BMD improved 1.45% (p = 0.014) the first year and 1.11% (p = 0.60) the second year. The difference between the two groups was statistically significant the first year (p < 0.001) but not the second (p = 0.60). Similar results were observed at the femoral neck but were not statistically significant. CONCLUSION: In elderly patients with osteoporosis not responding to bisphosphonates, vitamin D 1000 IU daily may improve BMD at the lumbar spine

    Ultrasound-Enhanced Drug Transport and Distribution in the Brain

    Get PDF
    Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm2. In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage
    corecore