198 research outputs found
Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research
Association between Serum Interleukin-6 Concentrations and Mortality in Older Adults: The Rancho Bernardo Study
Background: Interleukin-6 (IL-6) may have a protective role in acute liver disease but a detrimental effect in chronic liver disease. It is unknown whether IL-6 is associated with risk of liver-related mortality in humans. Aims: To determine if IL-6 is associated with an increased risk of all-cause, cardiovascular disease (CVD), cancer, and liverrelated mortality. Methods: A prospective cohort study included 1843 participants who attended a research visit in 1984–87. Multiple covariates were ascertained including serum IL-6. Multivariable-adjusted Cox proportional hazards regression analyses were used to examine the association between serum IL-6 as a continuous (log transformed) variable with all-cause, CVD, cancer, and liver-related mortality. Patients with prevalent CVD, cancer and liver disease were excluded for cause-specific mortality. Results: The mean (6 standard deviation) age and body-mass-index (BMI) of participants was 68 (610.6) years and 25 (63.7) Kg/m 2, respectively. During the 25,802 person-years of follow-up, the cumulative all-cause, CVD, cancer, and liverrelated mortality were 53.1 % (N = 978), 25.5%, 11.3%, and 1.3%, respectively. The median (6IQR) length of follow-up was 15.3610.6 years. In multivariable analyses, adjusted for age, sex, alcohol, BMI, diabetes, hypertension, total cholesterol, HDL, and smoking, one-SD increment in log-transformed serum IL-6 was associated with increased risk of all-cause, CVD, cancer, and liver-related mortality, with hazard ratios of 1.48 (95 % CI, 1.33–1.64), 1.38 (95 % CI, 1.16–1.65), 1.35 (95 % CI, 1.02–1.79)
Cardiac structure and function during ageing in energetically compromised Guanidinoacetate N-methyltransferase (GAMT)-knockout mice – a one year longitudinal MRI study
Gradient Descent Optimization in Gene Regulatory Pathways
BACKGROUND: Gene Regulatory Networks (GRNs) have become a major focus of interest in recent years. Elucidating the architecture and dynamics of large scale gene regulatory networks is an important goal in systems biology. The knowledge of the gene regulatory networks further gives insights about gene regulatory pathways. This information leads to many potential applications in medicine and molecular biology, examples of which are identification of metabolic pathways, complex genetic diseases, drug discovery and toxicology analysis. High-throughput technologies allow studying various aspects of gene regulatory networks on a genome-wide scale and we will discuss recent advances as well as limitations and future challenges for gene network modeling. Novel approaches are needed to both infer the causal genes and generate hypothesis on the underlying regulatory mechanisms. METHODOLOGY: In the present article, we introduce a new method for identifying a set of optimal gene regulatory pathways by using structural equations as a tool for modeling gene regulatory networks. The method, first of all, generates data on reaction flows in a pathway. A set of constraints is formulated incorporating weighting coefficients. Finally the gene regulatory pathways are obtained through optimization of an objective function with respect to these weighting coefficients. The effectiveness of the present method is successfully tested on ten gene regulatory networks existing in the literature. A comparative study with the existing extreme pathway analysis also forms a part of this investigation. The results compare favorably with earlier experimental results. The validated pathways point to a combination of previously documented and novel findings. CONCLUSIONS: We show that our method can correctly identify the causal genes and effectively output experimentally verified pathways. The present method has been successful in deriving the optimal regulatory pathways for all the regulatory networks considered. The biological significance and applicability of the optimal pathways has also been discussed. Finally the usefulness of the present method on genetic engineering is depicted with an example
A Co-Opted DEAD-Box RNA Helicase Enhances Tombusvirus Plus-Strand Synthesis
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells
Neuroanatomical Pattern of Mitochondrial Complex I Pathology Varies between Schizophrenia, Bipolar Disorder and Major Depression
BACKGROUND:Mitochondrial dysfunction was reported in schizophrenia, bipolar disorderand major depression. The present study investigated whether mitochondrial complex I abnormalities show disease-specific characteristics. METHODOLOGY/PRINCIPAL FINDINGS:mRNA and protein levels of complex I subunits NDUFV1, NDUFV2 and NADUFS1, were assessed in striatal and lateral cerebellar hemisphere postmortem specimens and analyzed together with our previous data from prefrontal and parieto-occipital cortices specimens of patients with schizophrenia, bipolar disorder, major depression and healthy subjects. A disease-specific anatomical pattern in complex I subunits alterations was found. Schizophrenia-specific reductions were observed in the prefrontal cortex and in the striatum. The depressed group showed consistent reductions in all three subunits in the cerebellum. The bipolar group, however, showed increased expression in the parieto-occipital cortex, similar to those observed in schizophrenia, and reductions in the cerebellum, yet less consistent than the depressed group. CONCLUSIONS/SIGNIFICANCE:These results suggest that the neuroanatomical pattern of complex I pathology parallels the diversity and similarities in clinical symptoms of these mental disorders
Assessment of acute myocardial infarction: current status and recommendations from the North American society for cardiovascular imaging and the European society of cardiac radiology
There are a number of imaging tests that are used in the setting of acute myocardial infarction and acute coronary syndrome. Each has their strengths and limitations. Experts from the European Society of Cardiac Radiology and the North American Society for Cardiovascular Imaging together with other prominent imagers reviewed the literature. It is clear that there is a definite role for imaging in these patients. While comparative accuracy, convenience and cost have largely guided test decisions in the past, the introduction of newer tests is being held to a higher standard which compares patient outcomes. Multicenter randomized comparative effectiveness trials with outcome measures are required
Trends in template/fragment-free protein structure prediction
Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward
Galectin-9 and CXCL10 as biomarkers for disease activity in juvenile dermatomyositis: a longitudinal cohort study and multi-cohort validation
OBJECTIVE: Objective evaluation of disease activity is challenging in patients with juvenile dermatomyositis (JDM) due to lack of biomarkers, but crucial to avoid both under- and overtreatment. Recently, we identified two proteins that highly correlate with JDM disease activity: galectin-9 and CXCL10. Here, we validate galectin-9 and CXCL10 as biomarkers for disease activity, assess disease-specificity and investigate their potency to predict flares. METHODS: Galectin-9 and CXCL10 were measured in serum samples of 125 unique JDM patients in three international cross-sectional cohorts and a local longitudinal cohort, by multiplex immunoassay. Disease-specificity was examined in 50 adults with (dermato)myositis and 61 patients with other systemic autoimmune diseases. RESULTS: Galectin-9 and CXCL10 outperformed the currently used marker creatine kinase (CK) to distinguish between JDM patients with active disease and remission, both cross-sectionally and longitudinally (area ROC curve: 0.86-0.90 for galectin-9 and CXCL10, 0.66-0.68 for CK). The sensitivity and specificity were 0.84 and 0.92 for galectin-9, and 0.87 and 1.00 for CXCL10. In 10 prospectively followed patients with a flare, continuously elevated or rising biomarker levels suggested an imminent flare up to several months before symptoms, even in absence of elevated CK. Galectin-9 and CXCL10 distinguished between active disease and remission in adults with (dermato)myositis and were suited for measurement in minimally-invasive dried blood spots. CONCLUSIONS: Galectin-9 and CXCL10 were validated as sensitive and reliable biomarkers for disease activity in (J)DM. Implementation of these biomarkers into clinical practice, as tools to monitor disease activity and guide treatment, might facilitate personalized treatment strategies
- …
