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Abstract
Background: High-resolution magnetic resonance imaging (cine-MRI) is well suited for determining
global cardiac function longitudinally in genetically or surgically manipulated mice, but in practice it is
seldom used to its full potential. In this study, male and female guanidinoacetate N-methyltransferase
(GAMT) knockout, and wild type littermate mice were subjected to a longitudinal cine-MRI study at four
time points over the course of one year. GAMT is an essential enzyme in creatine biosynthesis, such that
GAMT deficient mice are entirely creatine-free. Since creatine plays an important role in the buffering and
transfer of high-energy phosphate bonds in the heart, it was hypothesized that lack of creatine would be
detrimental for resting cardiac performance during ageing.

Methods: Measurements of cardiac structure (left ventricular mass and volumes) and function (ejection
fraction, stroke volume, cardiac output) were obtained using high-resolution cine-MRI at 9.4 T under
isoflurane anaesthesia.

Results: There were no physiologically significant differences in cardiac function between wild type and
GAMT knockout mice at any time point for male or female groups, or for both combined (for example
ejection fraction: 6 weeks (KO vs. WT): 70 ± 6% vs. 65 ± 7%; 4 months: 70 ± 6% vs. 62 ± 8%; 8 months:
62 ± 11% vs. 62 ± 6%; 12 months: 61 ± 7% vs. 59 ± 11%, respectively).

Conclusion: These findings suggest the presence of comprehensive adaptations in the knockout mice that
can compensate for a lack of creatine. Furthermore, this study clearly demonstrates the power of cine-
MRI for accurate non-invasive, serial cardiac measurements. Cardiac growth curves could easily be defined
for each group, in the same set of animals for all time points, providing improved statistical power, and
substantially reducing the number of mice required to conduct such a study. This technique should be
eminently useful for following changes of cardiac structure and function during ageing.
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Introduction
Magnetic resonance imaging (cine-MRI) is 3D-capable,
non-invasive, with high spatial resolution, and represents
the most sophisticated tool to determine cardiac structure
and function in normal, genetically or surgically manipu-
lated mice [1-4]. Hearts of juvenile or adult transgenic
mouse models are commonly examined and compared to
wild type littermates at a single time point to identify and
characterize the effect of the genetic alteration(s) on glo-
bal cardiac performance. However, due to the non-inva-
siveness of MRI, mice can be investigated in a longitudinal
fashion in order to follow-up after an intervention such as
myocardial infarction [5], transverse aortic constriction
[6], or to identify phenotypes that may occur as a function
of ageing.

Here we report on the longitudinal application of cine-
MRI on a mouse model of guanidinoacetate N-methyl-
transferase (GAMT)-deficiency [7]. GAMT catalyses the
second essential step in creatine synthesis, and conse-
quently hearts from these mice (when fed a creatine free
diet) completely lack creatine and phosphocreatine (PCr),
as we have previously confirmed non-invasively using 1H-
MRS and using HPLC [8]. Creatine is thought to play an
important role in cardiomyocytes contributing to the cre-
atine-kinase system, which is both an energy buffer and a
transport system shuttling high-energy phosphate bonds
(in the form of PCr) from the mitochondria to the myofi-
brils [9]. Indeed a loss of myocardial creatine has com-
monly been associated with the development of heart
failure [10], and reducing LV creatine concentration prior
to coronary artery ligation renders rats unable to survive a
myocardial infarction [11].

Our earlier studies in younger GAMT ko mice have dem-
onstrated only a small decrease in left ventricular (LV)
systolic pressure at rest, but a pronounced reduction in
contractile reserve in response to β-adrenergic receptor
stimulation [12]. However, this phenotype may represent
only the start of a longer progressive deterioration. For
example, mice over-expressing the β2-adrenergic receptor
have no evidence of cardiac dysfunction at 4 months, yet
go on to develop overt heart failure by 12 months of age
[13]. Therefore, in the present study, we investigated the
hypothesis that lack of creatine would be detrimental for
resting cardiac performance during ageing. To this pur-
pose we subjected male and female wild type and GAMT-
ko mice to a longitudinal cine-MRI study over a time
period of one year.

Materials and Methods
Animal preparation
All mice were backcrossed on to a C57Bl/6J background
for at least 8 generations. Knockout and wild type mice
were genotyped by polymerase chain reaction (PCR)

methods, and housed separately according to genotype to
prevent accumulation of creatine via coprophagia of fae-
ces from wild type animals. All investigations conform to
UK Home Office Guidance on the Operation of the Animals
(Scientific Procedures) Act, 1986 (HMSO) and to institu-
tional guidelines.

Male and female GAMT ko and wild type littermate mice
(n = 7 per group and sex) were kept in cages with 12 h
light-dark cycle and controlled temperature (20–22°C),
and fed creatine free chow and water ad libitum. Cine-MRI
studies were performed at the age of 6 weeks, 4, 8 and 12
months. After inducing anesthesia in an anesthetic cham-
ber using 4% isoflurane in 100% oxygen, animals were
positioned supine in a purpose-built animal holder for
positioning mice vertically, and maintained at 1.5–2%
isoflurane in 1 l/min oxygen flow throughout the MR
experiments. Cardiac and respiratory signals were contin-
uously monitored using an in-house developed ECG- and
respiratory gating device [14]. Both signals were derived
from two electrodes inserted subcutaneously in the front
paws. Respiratory signals could also be obtained from a
loop loosely fitted to the chest and abdomen of the ani-
mals. Temperature was maintained using a blanket that
was heated by warm air. Mice were secured within the
holder using surgical tape, without compressing their
abdomen or chest regions.

Magnetic Resonance Imaging
MR experiments were carried out on an 11.7 T (500 MHz)
MR system comprising a vertical magnet (bore size 123
mm – Magnex Scientific, Oxon, UK), a Bruker Avance con-
sole (Bruker Medical, Ettlingen, Germany) and a shielded
gradient system (548 mT/m, 160 µs rise time) (Magnex
Scientific, Oxon, UK). Quadrature driven birdcage coils
with inner diameters of 28 mm and 40 mm (Rapid Bio-
medical, Würzburg, Germany) were used according to the
body weight of the animal. High-resolution cine-MRI was
performed as described previously, using a fast gradient
echo sequence [15]. In brief, seven to ten contiguous slices
(slice thickness 1 mm) were acquired in short-axis orien-
tation covering the entire heart. The imaging parameters
were: field-of-view (25.6 mm)2, matrix size 256 × 256,
echo time/repetition time = 1.43/4.6 ms, α = 15°, number
of averages = 2. The sequence was ECG-triggered and res-
piratory gated, the total scan-time per animal ranged from
30 to 60 mins. 20–30 frames per cardiac cycle were
acquired depending on the heart rate.

Data analysis
Image reconstruction and data reconstruction was per-
formed off-line, using purpose-written idl-software
(Research Systems International, Crowthorne, Berkshire,
UK). Raw data were isotropically zerofilled by a factor of
two and filtered prior to Fourier transformation resulting
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in an in-plane voxel size of 50 × 50 µm and then exported
into TIFF-format. For segmentation, the TIFF-images were
loaded into Amira™ 2.3 (TGS Europe, Mérignac Cedex,
France). End-diastolic and end-systolic frames were
selected according to maximal and minimal ventricular
volume. Based on end-systolic (ESV) and end-diastolic
(EDV) volumes, all parameters characterising cardiac
function, such as stroke volume (SV = EDV-ESV), ejection
fraction (EF = SV/EDV) and cardiac output (CO = SV ×
heart rate), were calculated. Furthermore, LV volumes of a
mid-ventricular slice were segmented in all cine-frames,
normalized to the EDV of this slice to control for differ-
ences in chamber size, and subjected to a Fourier analysis
[16,17] using four harmonics in order to obtain maxi-
mum rates of volume change as a measure of contraction
and relaxation i.e. (dV/dt)min/max·EDV-1. All values are
given as mean ± SD. The data from each trait were statisti-
cally analyzed using a linear mixed-effects model with
mouse number (n = 28) as random factor, and fixed fac-
tors specified in the following order: gender (n = 2), gen-
otype (n = 2), and time (n = 4). Because genotype had a
significant effect on body weight, in the analysis of the five
structural parameters in this study (LVM, EDV, ESV, SV,
and CO) body weight was also included as a factor in the
model. The fit of the full model, which included the main
effects and all pair-wise fixed interaction terms, was
assessed first, and then the non-significant interaction
terms were dropped from the model. The fit of the main-
effects-only model was also assessed. We present P-values
uncorrected for multiple comparisons, where a value of P
< 0.01 was considered significant.

Results
In general, MR examinations were well tolerated with few
adverse effects. No significant difference in mortality was
observed; with a total of 3 KO mice (2 male + 1 female)
and 1 WT (female) mouse dying over the one year time
course of this study. In all cases, mice either failed to make
a full recovery from general anesthesia or died within a
few days after the 8 month MR-exam.

Figure 1a shows representative end-diastolic (top row)
and end-systolic (bottom row) frames of a male WT at 6
weeks, 4, 8 and at 12 months (from left to right). Figure
1b shows the corresponding frames of a male GAMT-ko
mouse. Both figures underline the image quality obtaina-
ble in such a longitudinal study. GAMT-ko mice had sig-
nificantly lower body weight compared to wild type
controls at all time points in males, and from 4 months of
age in females (Figure 2a). For this reason, all structural
parameters have been presented normalized to body
weight. However, mean values before normalization for
all cardiac structural and functional parameters are listed
in Table 1.

Each of the ten traits (i.e. BW, LVM, EDV, ESV, SV, EF, CO,
HR, (dV/dt)max·EDV-1 and (dV/dt)min·EDV-1, respec-
tively) were analyzed using a linear mixed-effects model,
which assessed the effect of gender, genotype, time, and
their interactions on the phenotype. In addition, for five
of the traits (LVM, EDV, ESV, SV, and CO) we also control-
led for the effect of body weight on the parameter, by
including BW as a factor in the model. For each trait we
initially obtained the fit of the full model, and then
dropped the interaction terms that were not significant.
The final refitted model included all main effects terms
and the significant interactions, which are listed in Table
2. The residuals versus the fitted responses from the
model were plotted for each response variable, and no
substantial deviations from the assumptions of constant
variance of the residuals were observed. The estimates of
the effect sizes and significance values obtained (Table 2)
for the main effects were not substantially affected when
main-effects-only models were fitted to the data, or by the
order of the variables in the model for main-effects-only
models. Linear regression of these data with robust vari-
ance estimation by clustering on mouse identifier yielded
comparable results (data not shown).

All factors had significant main effects for body weight as
mentioned above. Furthermore, a significant (P < 0.01)
interaction was obtained for body weight between
between genotype and time (F = 7.3, df = [3,68], P =
0.0003), indicating a different growth curve between KO
and WT mice, i.e. WT had a higher body weight compared
to KO at all time points (Tables 1 and 2).

Gender has a significant effect on body weight and on dV/
dtmax .EDV-1 (P < 0.0001 and P = 0.0048, respectively).
The majority of the traits showed significant variation
across time (Table 2). However, no significant interaction
between genotype and time was found for LVM or EDV,
indicating the absence of progressive LV dilatation or LV
hypertrophy.

Significant interactions were also obtained between gen-
der and genotype for heart rate (F = 16.33, df = [1,25], P =
0.0004), i.e. female WTs had lower heart rate than male
WTs at most time points; but the converse of this was true
for KO mice. The significance of this is unclear, especially
as all heart rates were typically > 450 bpm for all groups
and at all time points indicating that physiological condi-
tions under isoflurane anaesthesia were stable and repro-
ducible during the MR-examinations (see also Fig. 3a).

LV functional parameters such as EDV, ESV, stroke vol-
ume, and EF were not different between KO and WT mice,
and remained within the normal range at all time points
(Fig. 2c, d and Fig. 3b, c). There was a small but significant
trend towards an age-related decline in systolic function
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(a) Mid-ventricular end-diastolic (top row) and end-systolic (bottom row) frames in the short-axis orientation of a male wild type mouse heart for the four different time points covering the study duration of one yearFigure 1
(a) Mid-ventricular end-diastolic (top row) and end-systolic (bottom row) frames in the short-axis orientation of a male wild 
type mouse heart for the four different time points covering the study duration of one year. (b) Corresponding mid-ventricular 
end-diastolic (top row) and end-systolic (bottom row) frames in the short-axis orientation of a male GAMT-ko mouse heart at 
the respective time points. While the hearts of the transgenic mice were significantly smaller, cardiac function did not deterio-
rate over time, despite the lack of creatine. Scale bars: 2 mm.
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in all experimental groups (EF, P = 0.0027). Maximum
rates of contraction and relaxation were calculated as the
maximum and minimum rate of volume change. Since
this parameter is sensitive to differences in LV chamber
size, all volumes were normalized to EDV prior to fitting.
No differences were observed between genotypes, or over
time, for minimum rate of volume change (dV/
dt)min·EDV-1 (Table 1). The maximum rate of volume
change (dV/dt)max·EDV-1 as a measure of relaxation
showed a small decrease over time (Fig. 3d; P = 0.0009).
Moreover, female mice tended to have a higher (dV/
dt)max·EDV-1 (P = 0.0048).

Discussion
We have used high-resolution cine-MRI to systematically
assess cardiac function in a transgenic, creatine free,
mouse model of GAMT deficiency [7,8,18]. We applied
this technique repeatedly in the same animals covering a
time period of 12 months to address the question whether

cardiac function in these mice would deteriorate with age.
Creatine plays a crucial role in the energy metabolism of
the heart as a buffer and a carrier of high-energy phos-
phates [9]. A loss of creatine is characteristic for the failing
heart, and has been postulated as one major mechanism
leading to contractile dysfunction due to energetic
derangement [19]. It is therefore surprising that this study
did not reveal any evidence for LV hypertrophy or contrac-
tile dysfunction under baseline conditions in the creatine-
deficient GAMT ko mice even, at the age of 12 months.

GAMT ko mice have a combination of altered body com-
position and growth making meaningful comparison of
LV mass and volumes between genotypes difficult. Body
weight is up to 30% lower mainly due to a reduced total
body fat content [7], while long bone length is reduced by
~5% [12]. However, we have previously shown that
molecular markers of cardiac hypertrophy are not signifi-
cantly elevated in GAMT mice at 5 months of age confirm-

(a) Bodyweight (BW), (b) left ventricular mass (LVM), (c) EDV, and (d) ESV for all four groups (open square – male wt; open diamond – male ko; black diamond – female ko; black square – female wt) as a function of timeFigure 2
(a) Bodyweight (BW), (b) left ventricular mass (LVM), (c) EDV, and (d) ESV for all four groups (open square – male wt; open 
diamond – male ko; black diamond – female ko; black square – female wt) as a function of time. LVM, EDV and ESV were nor-
malized to the respective body weight.
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ing that these mice do not have LV hypertrophy [12].
Since in the present study, LVmass to body weight ratio
did not change with time compared to WT animals (Fig-
ure 2b), we now conclude that LV hypertrophy does not
develop during ageing in the GAMT ko mice. A possible
refinement to the current study would be to non-inva-
sively measure another parameter that more accurately
reflects body size when body composition is altered e.g.
tibial length or brain volume. However, this would add
significantly to the time taken for the imaging protocol,
especially as these areas are outside our RF-coils used for
cardiac imaging. While female mice tended to have a sta-
tistically significant altered relaxation compared to the
male animals, it seems unlikely that these relatively small
differences are physiologically relevant.

One limitation of this study is that, in order to keep the
protocol as non-invasive as possible and to avoid loss of
animals during the imaging procedure, we did not make
acute measurements of cardiac functional reserve, which
we have previously shown to be impaired in GAMT ko
mice [12]. This requires the parenteral administration of a
β-adrenergic agonist, preferably intravenously (IV). How-
ever, IV access in the mouse is not readily obtainable for
dosing at multiple time points, while drug absorption
from intraperitoneal injection is highly variable resulting
in poor repeatability.

Three GAMT ko mice and one WT died after being sub-
jected to general anesthesia at the 8 month imaging time
point. Although more mice died in the GAMT ko group,
this was not statistically significant, nor was this study
powered to determine differences in mortality. It is likely
that these deaths were associated with a general increased
risk from exposure to general anaesthesia with age. The
death of the three GAMT ko mice resulted in an unbal-
anced data design in the statistical analysis. However, sim-
ilar significance findings were obtained when re-
analyzing the data with a balanced design (i.e. completely
dropping out the individuals with missing data points –
data not shown).

In the current study we were interested in detecting phys-
iologically relevant differences according to sex and geno-
type by imaging the same sample of mice serially, rather
than collecting a larger sample of mice with non-serial
measurements. The study design therefore incorporated
correlated measures across different time points in devel-
opment. Mixed effects models provide a powerful tool for
the analysis of such grouped data. The increased power of
this approach allows for a reduced sample size needed for
this study. In addition, our sample has satisfactory power
to detect statistically significant differences of physiologi-
cal importance. For example, the power to detect a physi-
ologically significant difference in EF of at least 10 units is
greater than 95% if analyzing the sample at a single time

Table 1: Cardiac Parameters for Male and Female WT and GAMT-ko Mice measured by MRI

6 weeks 4 months 8 months 12 months

WT GAMT-ko WT GAMT-ko WT GAMT-ko WT GAMT-ko

n M
F

7
7

7
7

7
7

7
7

7
7

7
7

7
6

5
6

Body weight (g) M
F

22 ± 2
16 ± 1

17 ± 3
15 ± 1

29 ± 3
22 ± 1

24 ± 2
19 ± 1

32 ± 3
24 ± 2

24 ± 3
21 ± 3

35 ± 3
26 ± 3

25 ± 2
22 ± 2

LV Mass (mg) M
F

80 ± 6
71 ± 11

70 ± 13
67 ± 9

108 ± 12
94 ± 23

82 ± 11
86 ± 9

118 ± 9
91 ± 14

92 ± 11
86 ± 8

112 ± 19
101 ± 14

98 ± 8
90 ± 9

End-diastolic volume (µl) M
F

45 ± 6
49 ± 10

39 ± 12
44 ± 9

54 ± 8
55 ± 18

49 ± 18
47 ± 4

64 ± 13
58 ± 9

50 ± 16
52 ± 15

66 ± 12
63 ± 20

54 ± 15
57 ± 11

End-systolic volume (µl) M
F

16 ± 5
17 ± 5

11 ± 5
13 ± 4

23 ± 8
20 ± 9

16 ± 10
14 ± 1

24 ± 7
22 ± 4

21 ± 10
18 ± 7

28 ± 7
25 ± 12

19 ± 9
24 ± 7

Stroke volume (µl) M
F

29 ± 4
31 ± 6

28 ± 8
30 ± 6

31 ± 5
35 ± 10

32 ± 8
34 ± 4

40 ± 9
35 ± 8

29 ± 9
34 ± 10

38 ± 13
39 ± 9

35 ± 8
33 ± 5

Ejection fraction (%) M
F

65 ± 7
64 ± 4

72 ± 4
70 ± 7

58 ± 12
65 ± 4

68 ± 7
71 ± 4

62 ± 7
61 ± 6

58 ± 13
65 ± 8

56 ± 14
62 ± 6

66 ± 6
58 ± 6

Heart rate (bpm) M
F

485 ± 42
485 ± 25

506 ± 20
483 ± 46

555 ± 63
472 ± 27

465 ± 35
496 ± 45

514 ± 25
421 ± 24

450 ± 31
479 ± 43

488 ± 46
451 ± 51

441 ± 66
497 ± 14

Cardic output (ml · min-1) M
F

14.2 ± 1.4
15.2 ± 3.1

13.9 ± 3.3
14.4 ± 2.8

17.3 ± 3.3
16.6 ± 4.7

14.9 ± 3.4
14.6 ± 6.6

20.3 ± 4.0
14.8 ± 3.4

13.1 ± 4.5
16.0 ± 3.9

18.1 ± 6.0
17.3 ± 3.8

15.9 ± 5.5
16.1 ± 2.3

dV/dtmax.EDV-1

(103·s-1)
M
F

20.5 ± 5.0
24.7 ± 1.7

21.6 ± 3.5
23.2 ± 4.7

21.5 ± 5.0
22.1 ± 4.3

19.3 ± 1.7
23.3 ± 3.9

17.8 ± 3.2
19.9 ± 2.9

18.0 ± 2.1
21.3 ± 2.0

17.8 ± 3.7
18.7 ± 3.5

20.2 ± 4.1
20.5 ± 1.3

dV/dtmin.EDV-1

(103· s-1)
M
F

-18.2 ± 3.9
-15.0 ± 1.6

-21.3 ± 4.7
-18.6 ± 3.9

-17.8 ± 1.5
-16.7 ± 4.2

-21.7 ± 5.5
-20.8 ± 2.3

-19.4 ± 4.6
-15.0 ± 3.9

-16.7 ± 3.6
-17.3 ± 3.3

-15.8 ± 3.0
-16.8 ± 5.1

-17.5 ± 4.5
-15.8 ± 3.3

All parameters are for the left ventricle(LV) and represent mean ± standard deviation.
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point using a one-sample two-sided t-test at a significance
level of 0.01 to correct for multiple comparisons (assum-
ing a change in the mean EF of 10 units, the observed
standard deviation of EF of 8.42 units in the entire sam-
ple, 26 animals per group since 2 animals were lost from
the male KO group, and an alpha level of 0.01).

The ability of GAMT ko mice to maintain normal cardiac
function in the complete absence of phosphocreatine is
remarkable. A major factor in this is probably the accumu-
lation of the creatine precursor guanidinoacetate, which
can participate in the creatine kinase reaction albeit at 1%
of the reaction velocity for phosphocreatine [20]. Since
the GAMT knockout is not time-specific, other adapta-
tions are also likely, and major compensatory mecha-
nisms may develop during embryonic development.

Further experiments are ongoing to investigate such
potential adaptation in more detail.

The non-invasive, longitudinal nature of MRI is often dis-
cussed but seldom utilized to its full potential. In the cur-
rent climate of improving animal welfare, there is an
ethical imperative to implement the principles of replace-
ment, reduction and refinement within the context of ani-
mal experimentation. In the current study, we were able to
image the same mice serially, such that a total of 28 mice
were used in the entire study, rather than the more than
112 animals that would be required for non-serial meas-
urements. An equivalent reduction could also have been
achieved using echocardiography; however the superior
spatial resolution of MRI also enables fewer animals to be
used per group compared to echocardiography. For exam-

Table 2: Summary of the significant findings from the mixed-effects regression

Trait a Factor b Coefficient estimate 95% CI P-value

BW Sex -5.13 [-6.72, -3.54] <0.0001
Genotype -2.40 [-4.3, -0.49] <0.0001
Time - - <0.0001

4 months 6.34 [4.86, 7.82] <0.0001
8 months 8.28 [6.9, 9.66] <0.0001
12 months 11.73 [10.33, 13.13] <0.0001

Genotype*Time - - 0.0003
Genotype*4 months -1.52 [-3.55, 0.52] 0.1415
Genotype*8 months -2.60 [-4.56, -0.64] 0.0102
Genotype*12 months -4.79 [-6.88, -2.69] <0.0001

LVM BW 0.88 [-0.06, 1.81] <0.0001
Sex -4.50 [-13.36, 4.35] 0.2636
Genotype -8.85 [-16.91, -0.78] 0.7443
Time - - 0.0003

4 months 15.35 [7.9, 22.8] 0.0001
8 months 18.55 [10.27, 26.84] <0.0001
12 months 19.29 [8.84, 29.74] 0.0005

EF Sex 1.06 [-2.55, 4.66] 0.4924
Genotype 3.46 [-0.02, 6.94] 0.0334
Time - - 0.0027

4 months -1.43 [-5.58, 2.72] 0.4947
8 months -5.42 [-9.44, -1.4] 0.009
12 months -7.30 [-11.55, -3.06] 0.001

Heart rate Sex -48.49 [-74.64, -22.33] 0.1958
Genotype -42.08 [-67.96, -16.2] 0.698
Time - - 0.0519

4 months 4.99 [-17.61, 27.58] 0.6611
8 months -23.16 [-44.79, -1.54] 0.0362
12 months -20.67 [-43.49, 2.15] 0.0751

Sex*Genotype 73.26 [35.93, 110.6] 0.0004
dV/dtmax.EDV-1 Sex 0.002 [0.001, 0.004] 0.0048

Genotype 0.000 [-0.001, 0.002] 0.8454
Time 0.0009

4 months -0.001 [-0.003, 0.001] 0.2688
8 months -0.003 [-0.005, -0.001] 0.0017
12 months -0.004 [-0.005, -0.002] 0.0004

a Traits for which at least one factor in the model had significant (P < 0.01) effects.
b Estimated effects of KO compared to WT (baseline) for Genotype, female compared to male (baseline) for Sex, and trait values at 4 months, 8 
months, and 12 months compared to trait values at 6 weeks (baseline) for Time (3df test)
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ple, we used 7 animals per genotype and sex, compared to
12 animals per group for a similar longitudinal study
using echocardiography in mice [13]. It should also be
noted that 3-D volume measurements in mice using
echocardiography has only recently been described, and
has yet to become standard laboratory practice [21].

In conclusion, this study shows that GAMT ko mice have
normal cardiac structure and function at rest, which
remains normal during ageing. Furthermore, to the best of
our knowledge this is the first MR-study to report on the
longitudinal investigation of a transgenic mouse model
over the period of one year, demonstrating the power of
the MR-technique to accurately quantify cardiac func-
tional parameters in genetically modified mice in a longi-
tudinal fashion. Importantly, each animal served as its
own control, providing a more powerful statistical analy-
sis and substantially reducing the number of mice
required to conduct such a study.
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