731 research outputs found

    Henri Temianka Correspondence; (lte)

    Get PDF
    This collection contains material pertaining to the life, career, and activities of Henri Temianka, violin virtuoso, conductor, music teacher, and author. Materials include correspondence, concert programs and flyers, music scores, photographs, and books.https://digitalcommons.chapman.edu/temianka_correspondence/3077/thumbnail.jp

    Henri Temianka Correspondence; (lte)

    Get PDF
    This collection contains material pertaining to the life, career, and activities of Henri Temianka, violin virtuoso, conductor, music teacher, and author. Materials include correspondence, concert programs and flyers, music scores, photographs, and books.https://digitalcommons.chapman.edu/temianka_correspondence/3058/thumbnail.jp

    Finding Strong Gravitational Lenses with Residual Neural Networks

    Get PDF
    Measuring gravitational lensing by galaxies is the only way to directly study the elusive dark matter. However, gravitational lensing is a very rare phenomenon (~1 in 10,000 galaxies). Our goal is to find new strong gravitational lenses using deep neural networks (“neural nets”). We train our neural nets on a hand-labeled set of images, consisting of both lenses and non-lenses (“the training sample”). We then apply the trained neural nets to a “validation set” to assess the accuracy and precision of its predictions. Given the rarity of lenses, we cannot tolerate a false positive rate higher than 0.1%. This is to minimize or possibly eliminate human inspection. This is an extremely high bar for Machine Learning (“ML”) algorithms. Our data sets are selected from real observational data. Utilizing real data has not been attempted before. In this project we update and modify an existing neural net model, originally created by a team at Carnegie Mellon University (CMU) written in Theano, a python library used for ML. After training on real, observed data the neural network recommended ~40,000 recommendations from a sample of 15 million galaxies. All recommendations were inspected by hand, from which there were hundreds of high probability candidates for strong lensing

    Retrospective Search for Strongly Lensed Supernovae in the DESI Legacy Imaging Surveys

    Full text link
    The introduction of deep wide-field surveys in recent years and the adoption of machine learning techniques have led to the discoveries of O(104)\mathcal{O}(10^4) strong gravitational lensing systems and candidates. However, the discovery of multiply lensed transients remains a rarity. Lensed transients and especially lensed supernovae are invaluable tools to cosmology as they allow us to constrain cosmological parameters via lens modeling and the measurements of their time delays. In this paper, we develop a pipeline to perform a targeted lensed transient search. We apply this pipeline to 5807 strong lenses and candidates, identified in the literature, in the DESI Legacy Imaging Surveys Data Release 9 (DR9) footprint. For each system, we analyze every exposure in all observed bands (DECam gg, rr, and zz). Our pipeline finds, groups, and ranks detections that are in sufficient proximity temporally and spatially. After the first round of inspection, for promising candidate systems, we further examine the newly available DR10 data (with additional ii and Y\textrm{Y} bands). Here we present our targeted lensed supernova search pipeline and seven new lensed supernova candidates, including a very likely lensed supernova - probably a Type Ia - in a system with an Einstein radius of 1.5\sim 1.5''.Comment: 53 pages, 50 figures, 3 table

    Transcriptional response of Mexican axolotls to \u3ci\u3eAmbystoma tigrinum\u3c/i\u3e virus (ATV) infection

    Get PDF
    Background Very little is known about the immunological responses of amphibians to pathogens that are causing global population declines. We used a custom microarray gene chip to characterize gene expression responses of axolotls (Ambystoma mexicanum) to an emerging viral pathogen, Ambystoma tigrinum virus (ATV). Result At 0, 24, 72, and 144 hours post-infection, spleen and lung samples were removed for estimation of host mRNA abundance and viral load. A total of 158 up-regulated and 105 down-regulated genes were identified across all time points using statistical and fold level criteria. The presumptive functions of these genes suggest a robust innate immune and antiviral gene expression response is initiated by A. mexicanum as early as 24 hours after ATV infection. At 24 hours, we observed transcript abundance changes for genes that are associated with phagocytosis and cytokine signaling, complement, and other general immune and defense responses. By 144 hours, we observed gene expression changes indicating host-mediated cell death, inflammation, and cytotoxicity. Conclusion Although A. mexicanum appears to mount a robust innate immune response, we did not observe gene expression changes indicative of lymphocyte proliferation in the spleen, which is associated with clearance of Frog 3 iridovirus in adult Xenopus. We speculate that ATV may be especially lethal to A. mexicanum and related tiger salamanders because they lack proliferative lymphocyte responses that are needed to clear highly virulent iridoviruses. Genes identified from this study provide important new resources to investigate ATV disease pathology and host-pathogen dynamics in natural populations

    Host species composition influences infection severity among amphibians in the absence of spillover transmission

    Full text link
    Wildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co‐occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co‐occurring host species. By manipulating larval assemblages of three sympatric amphibian species in the laboratory, we characterized the relationship between host species richness and infection severity, whether infection mediates growth and survivorship differently across various combinations of host species, and whether Bd is transmitted from experimentally inoculated tadpoles to uninfected tadpoles. We found evidence of a dilution effect where Bd infection severity was dramatically reduced in the most susceptible of the three host species (Anaxyrus boreas). Infection also mediated survival and growth of all three host species such that the presence of multiple host species had both positive (e.g., infection reduction) and negative (e.g., mortality) effects on focal species. However, we found no evidence that Bd infection is transmitted by this species. While these results demonstrate that host species richness as well as species identity underpin infection dynamics in this system, dilution is not the product of reduced transmission via fewer infectious individuals of a susceptible host species. We discuss various mechanisms, including encounter reduction and antagonistic interactions such as competition and opportunistic cannibalism that may act in concert to mediate patterns of infection severity, growth, and mortality observed in multihost communities.There are many ways in which infection can be influenced by species diversity. Here we show experimentally that the interactions between species in a multi‐host amphibian community drive the severity of infection by the amphibian chytrid fungus. We find no evidence that infection is transmitted between two host species in our study, suggesting that spillover infection is not a cause of dilution effects in this system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111214/1/ece31385.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111214/2/ece31385-sup-0001-FigureS1.pd
    corecore