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● Assemble a larger and more statistically representative training sample
● Shift ResNet training from Central Processing Units (CPUs) to Graphics 

Processing Units (GPUs)
● Retrain and apply our model to DR8 of the Legacy Surveys 
● Experiment with hyperparameter tuning and alternative architectures

Training Method

Ongoing Work

Training hyperparameters:
Batch size: 256

Learning rate: 1e-3
Epochs: 120

Decay at epoch: 40
Decay rate: 0.1

Discoveries

“Hubble Finds an Einstein Ring.” Edited by Karl Hille, NASA, NASA, 9 Apr.  2018, 
www.nasa.gov/image-feature/goddard/2018/hubble-finds-an-einstein-ring.

We perform have a semi-automated search for strong gravitational 
lensing systems in the 14,000 deg2 DESI Legacy Imaging Surveys (Dey 
et al.). These surveys not only cover more than a third of the sky but 
also achieves significant depth. This has created an environment ripe for 
the discovery of many things, strong gravitational lensing events among 
them. In order to find these systems we have developed a 
semi-automated process which utilizes an adopted version of Carnegie 
Mellon University (CMU) Deeplens (Lanusse et al.), a deep residual 
neural network, followed by minimal human inspection. We are the first 
to use a training set containing images of observed data to train a neural 
network for the purpose of finding strong lenses. This training set comes 
from the DESI Legacy Surveys and is comprised of known lensing 
systems, random galaxies, and potentially confusing cases for the 
neural network. Here we detail the process of optimization as well as the 
results of deployment, which has thus far yielded hundreds of new 
strong lensing candidates, for our version of CMU Deeplens.

Abstract

Hoell, Josef.  “What Are Gravitational Lenses?” What Are Gravitational Lenses?, German Aerospace Center, 2009, 
www.dlr.de/en/desktopdefault.aspx/tabid-5170/8702_read-18007/8702_page-3/gallery_read-Image.1.9808/.

Residual Neural Network

By mass, there is 5 times as much dark 
matter as “normal” matter in the universe.

Training & Validation Data:
Image Dimensions: 101x101x3

Channels: green, red and infrared
Training set: 15055 images (463 lenses) 
Validation set: 6452 images (198 lenses)

We used Graphics Processing Units (GPUs), made available via Google’s 
Colab, in the training process.  GPUs excel at performing many simple 
numerical operations simultaneously, exactly what ML algorithms need to 
do. In order to optimize the process further, we translated the ML algorithm 
(previously written in Theano) to Google’s Tensorflow, a ML python library 
which is made to run efficiently on GPUs. A full training session takes about 
10 hours compared to an estimated 34 hours with distributed training on 
Central Processing Units (CPUs) on 3 workers. 

“CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong 
Lens Finding.” https://arxiv.org/pdf/1703.02642.pdf

Diagram of Gravitational Lensing

Example of Strong Gravitational Lensing

Convolutional neural nets (“ConvNets”) have revolutionized the image 
classification problem.  ConvNets use stacks of convolution layers 
(image filters) to distill information relevant for classification.  
Unfortunately, there is an upper limit to the number of convolutional 
layers (~6 layers).  A team at Microsoft Research expanded upon 
ConvNets by inventing Residual Neural Networks (“ResNets”).  ResNets 
allow for significantly deeper architectures.  The model below is a 46 
layer ResNet.  Each image to the right of the model is a visual 
representation of the output of each stack of layers.

We trained our most recent model using TensorFlow on Google’s Colab 
with the full training sample (no validation set).  We use the area under 
the receiver operating characteristic (ROC) curve, shortened as the AUC 
(with a perfect value being 1.0) and the purity and completeness to 
assess the performance of our model. We have processed 
approximately one third of just the elliptical galaxies in the legacy 
survey. After human inspection we have found over 1000 strong 
candidates of lensing systems. The results show that our model is 
amongst the most competitive machine learning techniques used to 
search for strong gravitational lenses.
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We proposed to 
observe and confirm, 
on the Hubble Space 
Telescope (HST), 112 
candidate strong 
gravitational lensing 
systems that we have 
discovered. Our 
Program has been 
approved (15867, 
Cycle 27, PI: Huang). 
Two systems that have 
recently been 
observed by HST from 
our program are 
shown in Fig. 9.  

DESI-245.7514+21.6226

DESI-023.6765+04.5639

White arrows: lensed sources identified in both 
Legacy Surveys and HST images. 
Green arrows: lensed sources visible only in HST 
and not in the Legacy Surveys images.

http://archive.stsci.edu/cgi-bin/mastpreview?mission=hst&dataid=IE5095010
http://archive.stsci.edu/cgi-bin/mastpreview?mission=hst&dataid=IE5009010

