786 research outputs found

    FDTD modeling of heatsink RF characteristics for EMC mitigation

    Get PDF
    Due to their size and complex geometry, large heatsinks such as those used in the power electronics industry may enhance the radiated emissions produced by the circuits employing them. Such enhancement of the radio frequency (rf) radiation could cause the equipment to malfunction or to contravene current EMC regulations. In this paper, the electromagnetic resonant effects of heatsinks are examined using the finite-difference time-domain (FDTD) method and recommendations are made concerning the optimum geometry of heatsinks and the placement of components so as to mitigate potential EMC effects

    On the absence of appreciable half-life changes in alpha emitters cooled in metals to 1 Kelvin and below

    Get PDF
    The recent suggestion that dramatic changes may occur in the lifetime of alpha and beta decay when the activity, in a pure metal host, is cooled to a few Kelvin, is examined in the light of published low temperature nuclear orientation (LTNO) experiments, with emphasis here on alpha decay. In LTNO observations are made of the anisotropy of radioactive emissions with respect to an axis of orientation. Correction of data for decay of metallic samples held at temperatures at and below 1 Kelvin for periods of days and longer has been a routine element of LTNO experiments for many years. No evidence for any change of half life on cooling, with an upper level of less than 1%, has been found, in striking contrast to the predicted changes, for alpha decay, of several orders of magnitude. The proposal that such dramatic changes might alleviate problems of disposal of long-lived radioactive waste is shown to be unrealistic.Comment: 27 pages, 12 figures, accepted for publication in Nucl.Phys.A. Revised version, including quantitative analysis of the sensitivity of nuclear orientation experiments, discussed in this work, to changes of alpha-decay lifetimes in metals at low temperatures. Conclusions remain unchange

    Instantons for Vacuum Decay at Finite Temperature in the Thin Wall Limit

    Full text link
    In N+1N+1 dimensions, false vacuum decay at zero temperature is dominated by the O(N+1)O(N+1) symmetric instanton, a sphere of radius R0R_0, whereas at temperatures T>>R0−1T>>R_0^{-1}, the decay is dominated by a `cylindrical' (static) O(N)O(N) symmetric instanton. We study the transition between these two regimes in the thin wall approximation. Taking an O(N)O(N) symmetric ansatz for the instantons, we show that for N=2N=2 and N=3N=3 new periodic solutions exist in a finite temperature range in the neighborhood of T∌R0−1T\sim R_0^{-1}. However, these solutions have higher action than the spherical or the cylindrical one. This suggests that there is a sudden change (a first order transition) in the derivative of the nucleation rate at a certain temperature T∗T_*, when the static instanton starts dominating. For N=1N=1, on the other hand, the new solutions are dominant and they smoothly interpolate between the zero temperature instanton and the high temperature one, so the transition is of second order. The determinantal prefactors corresponding to the `cylindrical' instantons are discussed, and it is pointed out that the entropic contributions from massless excitations corresponding to deformations of the domain wall give rise to an exponential enhancement of the nucleation rate for T>>R0−1T>>R_0^{-1}.Comment: 24 pages, 7 figures available upon request, DAMTP-R-94/

    Heliospheric Transport of Neutron-Decay Protons

    Get PDF
    We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar Physic

    Transient field g factor and mean-life measurements with a rare isotope beam of 126Sn

    Get PDF
    Background: The g factors and lifetimes of the 21+ states in the stable, proton-rich Sn isotopes have been measured, but there is scant information on neutron-rich Sn isotopes. Purpose: Measurement of the g factor and the lifetime of the 21+ state at 1.141 MeV in neutron-rich 126Sn (T1/2=2. 3×105y). Method: Coulomb excitation in inverse kinematics together with the transient field and the Doppler shift attenuation techniques were applied to a radioactive beam of 126Sn at the Holifield Radioactive Ion Beam Facility. Results: g(21+)=-0.25(21) and τ(21+)=1.5(2) ps were obtained. Conclusions: The data are compared to large-scale shell-model and quasiparticle random-phase calculations. Neutrons in the h11/2 and d3/2 orbitals play an important role in the structure of the 21+ state of 126Sn. Challenges, limitations, and implications for such experiments at future rare isotope beam facilities are discussed

    Applicability and Cost Implications for Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors Based on the ODYSSEY Outcomes Trial: Insights From the Department of Veterans Affairs

    Get PDF
    In the recently presented ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab trial, alirocumab use in patients with acute coronary syndrome (ACS) and low-density lipoprotein cholesterol (LDL-C) ≄70 mg/dL (or non–high-density lipoprotein cholesterol ≄100 mg/dL or apolipoprotein B ≄80 mg/dL) resulted in a 15% relative (1.6% absolute) reduction in the risk of major adverse cardiovascular events. We evaluated what proportion of patients in the VA Health Care System would qualify for alirocumab on the basis of ODYSSEY Outcomes criteria, how they are currently treated with LDL-C–lowering medications, and the cost implications if other evidence-based medications were used first before a proprotein convertase subtilisin/kexin type 9 inhibitor was considered

    Very High-Risk ASCVD and Eligibility for Nonstatin Therapies Based on the 2018 AHA/ACC Cholesterol Guidelines

    Get PDF
    The 2018 American Heart Association/American College of Cardiology Multisociety Cholesterol Guidelines recommend risk stratification among patients with atherosclerotic cardiovascular disease (ASCVD) to identify “very high-risk ASCVD patients.” These patients have characteristics associated with a higher risk of recurrent ASCVD events; consequently, they derive a higher net absolute benefit from addition of ezetimibe and/or a proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i) to statin therapy. From a clinical and payer’s perspective, we assessed the proportion of patients with ASCVD who will qualify as very high-risk based on the guideline criteria, their current lipid management, and how this will change with maximizing statin therapy and stepwise use of ezetimibe before consideration for a PCSK9i, as recommended by the 2018 cholesterol guideline

    Identification of the g9/2-proton bands in the neutron-rich Ga71,73,75,77 nuclei

    Get PDF
    Excited states in the odd-AGa71,73,75,77 nuclei have been populated in deep-inelastic reactions of a Ge76 beam at 530 MeV with a thick U238 target. High-spin sequences built upon the 9/2+, 5/2-, and 3/2- states were identified in all four isotopes. A comparison of the observed structures with the yrast positive-parity states in the neighboring even-even Zn cores indicates that the newly identified levels may be regarded as arising from the relatively weak coupling of the odd proton to the core states. However, significant contributions from broken pairs are expected to be present in this region of excitation energy. The present data set also provides clarification of previously reported decay paths of the low-energy levels in Ga71,73,75,77

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    A simple model to quantitatively account for periodic outbreaks of the measles in the Dutch Bible Belt

    Get PDF
    In the Netherlands there has been nationwide vaccination against the measles since 1976. However, in small clustered communities of orthodox Protestants there is widespread refusal of the vaccine. After 1976, three large outbreaks with about 3000 reported cases of the measles have occurred among these orthodox Protestants. The outbreaks appear to occur about every twelve years. We show how a simple Kermack-McKendrick-like model can quantitatively account for the periodic outbreaks. Approximate analytic formulae to connect the period, size, and outbreak duration are derived. With an enhanced model we take the latency period in account. We also expand the model to follow how different age groups are affected. Like other researchers using other methods, we conclude that large scale underreporting of the disease must occur
    • 

    corecore