64 research outputs found

    Dirac magnons in a honeycomb lattice quantum XY magnet CoTiO3

    Full text link
    The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D) kagome lattice magnet and in the van der Waals layered honeycomb crystal CrI3_3, and in a 3D Heisenberg magnet Cu3_3TeO6_6. Here we report on our inelastic neutron scattering investigation on large single crystals of a stacked honeycomb lattice magnet CoTiO3_3, which is part of a broad family of ilmenite materials. The magnetically ordered ground state of CoTiO3_3 features ferromagnetic layers of Co2+^{2+}, stacked antiferromagnetically along the cc-axis. We discover that the magnon dispersion relation exhibits strong easy-plane exchange anisotropy and hosts a clear gapless Dirac cone along the edge of the 3D Brillouin zone. Our results establish CoTiO3_3 as a model pseudospin-1/21/2 material to study interacting Dirac bosons in a 3D quantum XY magnet.Comment: 7 pages, 5 figures; Supplemental Materials Available upon reques

    Framing the discussion of microorganisms as a facet of social equity in human health

    Get PDF
    What do “microbes” have to do with social equity? These microorganisms are integral to our health, that of our natural environment, and even the “health” of the environments we build. The loss, gain, and retention of microorganisms—their flow between humans and the environment—can greatly impact our health. It is well-known that inequalities in access to perinatal care, healthy foods, quality housing, and the natural environment can create and arise from social inequality. Here, we focus on the argument that access to beneficial microorganisms is a facet of public health, and health inequality may be compounded by inequitable microbial exposure

    Sustained CD28 Expression Delays Multiple Features of Replicative Senescence in Human CD8 T Lymphocytes

    Get PDF
    CD28 costimulatory signal transduction in T lymphocytes is essential for optimal telomerase activity, stabilization of cytokine mRNAs, and glucose metabolism. During aging and chronic infection with HIV-1, there are increased proportions of CD8 T lymphocytes that lack CD28 expression and show additional features of replicative senescence. Moreover, the abundance of these cells correlates with decreased vaccine responsiveness, early mortality in the very old, and accelerated HIV disease progression. Here, we show that sustained expression of CD28, via gene transduction, retards the process of replicative senescence, as evidenced by enhanced telomerase activity, increased overall proliferative potential, and reduced secretion of pro-inflammatory cytokines. Nevertheless, the transduced cultures eventually do reach senescence, which is associated with increased CTLA-4 gene expression and a loss of CD28 cell surface expression. These findings further elucidate the central role of CD28 in the replicative senescence program, and may ultimately lead to novel therapies for diseases associated with replicative senescence

    Structural and Functional Profiling of the Human Histone Methyltransferase SMYD3

    Get PDF
    The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the “split-SET” domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline
    corecore