16 research outputs found

    Quantum state transfer in disordered spin chains: How much engineering is reasonable?

    Get PDF
    The transmission of quantum states through spin chains is an important element in the implementation of quantum information technologies. Speed and fidelity of transfer are the main objectives which have to be achieved by the devices even in the presence of imperfections which are unavoidable in any manufacturing process. To reach these goals, several kinds of spin chains have been suggested, which differ in the degree of fine-tuning, or engineering, of the system parameters. In this work we present a systematic study of two important classes of such chains. In one class only the spin couplings at the ends of the chain have to be adjusted to a value different from the bulk coupling constant, while in the other class every coupling has to have a specific value. We demonstrate that configurations from the two different classes may perform similarly when subjected to the same kind of disorder in spite of the large difference in the engineering effort necessary to prepare the system. We identify the system features responsible for these similarities and we perform a detailed study of the transfer fidelity as a function of chain length and disorder strength, yielding empirical scaling laws for the fidelity which are similar for all kinds of chain and all disorder models. These results are helpful in identifying the optimal spin chain for a given quantum information transfer task. In particular, they help in judging whether it is worthwhile to engineer all couplings in the chain as compared to adjusting only the boundary couplings.Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universität Dortmund; AlemaniaFil: Alvarez, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universität Dortmund; AlemaniaFil: Stolze, Joachim. Universität Dortmund; AlemaniaFil: Osenda, Omar. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Selective Infarct Zone Imaging With Intravenous Acoustically Activated Droplets

    Get PDF
    BACKGROUND: Microbubbles (MB) can be compressed to nanometer-sized droplets and reactivated with diagnostic ultrasound; these reactivated MB possess unique imaging characteristics. OBJECTIVE: We hypothesized that droplets formed from compressing Definity MB may be used for infarct-enhancement imaging. METHODS: Fourteen rats underwent ligation of their left anterior descending (LAD) artery, and five pigs underwent 90 minute balloon occlusions of their mid LAD. At 48 hours in rats, transthoracic ultrasound was performed at two and four minutes following 200 ÎĽL intravenous injections (IVI) of Definity droplets (DD), at which point the MI was increased from 0.5 to 1.5 to assess for a transient contrast enhancement zone (TEZ) within akinetic segments. In pigs, 1.0 mL injections of DD were administered and low frame rate (triggered end systolic or 10 Hz) imaging 2-4 minutes post iVI to selectively activate and image the infarct zone (IZ). Infarct size was defined by delayed enhancement magnetic resonance imaging (DE-MRI) and post-mortem staining (TTC). RESULTS: Increasing MI to 1.5 (at two or four minutes after IVI) resulted in a TEZ in rats, which correlated with infarct size (r = 0.94, p CONCLUSION: DD formulated from commercially available MB can be acoustically activated for selective infarct enhancement imaging

    Growth, Crystal Structure and Magnetic Characterization of Zn-Stabilized CePtIn4

    Full text link
    The growth and characterization of CePtIn4, stabilized by 10% Zn substitution for In, is reported. The new material is orthorhombic, space group Cmcm (No. 63), with lattice parameters a = 4.51751(4) {\AA}, b = 16.7570(2) {\AA}, and c = 7.36682(8) {\AA}, and the refined crystal composition has 10% of Zn substituted for In, i.e. the crystals are CePt(In3.6Zn0.1)4. Crystals were grown using a self-flux method: only growths containing Zn yielded CePtIn4 crystals, while Ce3Pt4In13 crystals formed when Zn was not present. Anisotropic temperature-dependent magnetic susceptibilities for single crystals show that Zn-stabilized CePtIn4 orders magnetically at ~1.9 K. High-temperature Curie-Weiss fits indicate an effective moment of ~2.30 muB/ Ce and a directionally averaged Weiss-temperature of approximately - 9 K. Specific heat data shows a peak consistent with the ordering temperature seen in the magnetic susceptibility data. Zn-stabilized CePtIn4 is metallic and displays no superconducting transition down to 0.14 K.Comment: 8 pages, 5 figures, 1 tabl

    Selective infarct zone imaging with intravenous acoustically activated droplets.

    Get PDF
    BACKGROUND:Microbubbles (MB) can be compressed to nanometer-sized droplets and reactivated with diagnostic ultrasound; these reactivated MB possess unique imaging characteristics. OBJECTIVE:We hypothesized that droplets formed from compressing Definity MB may be used for infarct-enhancement imaging. METHODS:Fourteen rats underwent ligation of their left anterior descending (LAD) artery, and five pigs underwent 90 minute balloon occlusions of their mid LAD. At 48 hours in rats, transthoracic ultrasound was performed at two and four minutes following 200 ÎĽL intravenous injections (IVI) of Definity droplets (DD), at which point the MI was increased from 0.5 to 1.5 to assess for a transient contrast enhancement zone (TEZ) within akinetic segments. In pigs, 1.0 mL injections of DD were administered and low frame rate (triggered end systolic or 10 Hz) imaging 2-4 minutes post iVI to selectively activate and image the infarct zone (IZ). Infarct size was defined by delayed enhancement magnetic resonance imaging (DE-MRI) and post-mortem staining (TTC). RESULTS:Increasing MI to 1.5 (at two or four minutes after IVI) resulted in a TEZ in rats, which correlated with infarct size (r = 0.94, p<0.001). A TEZ was not seen at 2-4 minutes in any rat (n = 8) following Definity MB injections. Fluorescent staining confirmed DD presence within the infarct zone 10 minutes after intravenous injection. In pigs, selective enhancement within the IZ was achieved by using a low frame rate single pulse harmonic mode; IZ size matched the location seen with DE-MRI and correlated with TTC defect size (r = 0.90, p<0.05). CONCLUSION:DD formulated from commercially available MB can be acoustically activated for selective infarct enhancement imaging

    Delayed Echo Enhancement Imaging to Quantify Myocardial Infarct Size

    No full text
    BACKGROUND: Perfluoropropane droplets formulated from commercial microbubbles exhibit different acoustic characteristics than their parent microbubbles, most likely from enhanced endothelial permeability. This enhanced permeability may permit delayed echo-enhancement imaging (DEEI) similar to delayed enhancement magnetic resonance imaging (DE-MRI). We hypothesized this would allow detection and quantification of myocardial scar. METHODS: In 15 pigs undergoing 90 minutes of left anterior descending ischemia by either balloon (n = 13) or thrombotic occlusion (n = 2), DE-MRI was performed at 2-24 days postocclusion. Delayed echo-enhancement imaging was performed at 2-4 minutes following an intravenous injection of 1 mL of 50% Definity (Lantheus Medical) compressed into 180 nm droplets; DEEI was attempted in all pigs with single-pulse harmonic imaging at 1.7 transmit/3.4 MHz receive. Myocardial defects observed with DEEI were quantified (percentage of infarct area) and compared with DE-MRI as well as postmortem staining. In six pigs, multipulse low-mechanical index (MI) fundamental nonlinear imaging (FNLI) with intermittent high-MI impulses was performed to determine whether droplet activation within the infarct zone was achievable with a longer pulse duration. RESULTS: The range of infarct size area by DE-MRI ranged from 0% to 46% of total left ventricular area. Single-pulse harmonic imaging detected a contrast defect that correlated closely with infarct area by DE-MRI (r = 0.81, P = .0001). The FNLI high-MI impulses resulted in droplet activation in both the infarct and normal zones. Harmonic subtraction of the FNLI images resulted in infarct zone enhancement that also correlated closely with infarct size (r = 0.83; P = .04). Droplets were observed on postmortem transmission electron microscopy within myocytes of the infarct and remote normal zone. CONCLUSION: Intravenously Definity nanodroplets can be utilized to detect and quantify infarct zone at the bedside using DEEI techniques

    Efficacy of Sonothrombolysis Using Acoustically Activated Perflutren Nanodroplets versus Perflutren Microbubbles

    No full text
    Nanoscale-diameter liquid droplets from commercially available microbubbles may optimize thrombus permeation and subsequent thrombus dissolution (TD). Thrombi were made using fresh porcine arterial whole blood and placed in an in vitro vascular simulation. A diagnostic ultrasound probe in contact with a tissue-mimicking phantom tested intermittent high-mechanical-index (HMI) fundamental multipulse (focused ultrasound [FUS], 1.8 MHz) versus harmonic single-pulse (HUS, 1.3 MHz) modes during a 10-min infusion of Definity nanodroplets (DNDs), Definity microbubbles (DMBs) or saline. The ability of FUS and intravenous DNDs to improve epicardial and microvascular flow was then tested in four pigs with left anterior descending thrombotic occlusion. Sixty in vitro thrombi were tested, 20 in each group. Percentage TD was significantly higher for DND-treated thrombi than DMB-treated thrombi and controls (DNDs: 42.4%, DMBs: 26.7%, saline: 15.0%; p < 0.0001 vs. control). The highest %TD was seen in the HMI FUS-treated DND group (51 ± 17% TD). HMI FUS detected droplet activation within the risk area in three of four pigs with left anterior descending thrombotic occlusion and re-canalized the epicardial vessel in two. DNDs with intermittent diagnostic HMI ultrasound resulted in significantly more intravascular TD than DMBs and have potential for coronary and risk area thrombolysis
    corecore