158 research outputs found
Bacterial Respiration of Arsenate and Its Significance in the Environment
Although arsenic is a trace element in terms of its natural abundance, it nonetheless
has a common presence within the earth's crust. Because it is classified as a
group VB element in the periodic table, it shares many chemical and biochemical
properties in common with its neighbors phosphorus and nitrogen. Indeed, in the
case of this element's most oxidized (+5) oxidation state, arsenate [HAsO_4^(2-) or
As (V)], its toxicity is based on its action as an analog of phosphate. Hence,
arsenate ions uncouple the oxidative phosphorylation normally associated with
the enzyme glyceraldehyde 3-phosphate dehydrogenase, thereby preventing the
formation ofphosphoglyceroyl phosphate, a key high-energy intermediate in glycolysis.
To guard against this, a number of bacteria possess a detoxifying arsenate
reductase pathway (the arsC system) whereby cytoplasmic enzymes remove internal
pools of arsenate by achieving its reduction to arsenite [H_2AsO_3- or As
(III)]. However, because the arsenite product binds with internal sulfhydryl
groups that render it even more toxic than the original arsenate, efficient arsenite
efflux from the cell is also required and is achieved by an active ion ''pumping'' system (1). The details of this bacterial arsenic detoxification phenomenon have
been well established in the literature, and Chapter 10 in this volume provided
a thorough review. Here, we discuss bacterial respiration of arsenate and its significance
in the environment. As a biological phenomenon, respiratory growth
on arsenate is quite remarkable, given the toxicity of the element. Moreover, the
consequences of microbial arsenate respiration may, at times, have a significant
impact on environmental chemistry
Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor
A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 °C; optimum, 30 °C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. © 2007 IUMS
An Invitation to Higher Gauge Theory
In this easy introduction to higher gauge theory, we describe parallel
transport for particles and strings in terms of 2-connections on 2-bundles.
Just as ordinary gauge theory involves a gauge group, this generalization
involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie
group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes,
which play an important role in string theory and multisymplectic geometry.
Second, every group representation gives a Lie 2-group; the representation of
the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which
leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint
representation of any Lie group on its own Lie algebra gives a 'tangent
2-group', which serves as a gauge 2-group in 4d BF theory, which has
topological gravity as a special case. Fourth, every Lie group has an 'inner
automorphism 2-group', which serves as the gauge group in 4d BF theory with
cosmological constant term. Fifth, every Lie group has an 'automorphism
2-group', which plays an important role in the theory of nonabelian gerbes. And
sixth, every compact simple Lie group gives a 'string 2-group'. We also touch
upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra
that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum
Gravity and Quantum Geometry at the 2009 Corfu Summer Institut
Methane, arsenic, selenium and the origins of the DMSO reductase family
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time
The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri
BACKGROUND: Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018. METHODOLOGY/PRINCIPAL FINDINGS: Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains. CONCLUSION/SIGNIFICANCE: The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts
Mitochondria-Containing Extracellular Vesicles (EV) Reduce Mouse Brain Infarct Sizes and EV/HSP27 Protect Ischemic Brain Endothelial Cultures
Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke
Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma
BACKGROUND: Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5α-reductase (5αR) and lower 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO activities. The resulting higher levels of 5α-reduced progesterone metabolites such as 5α-pregnane-3,20-dione (5αP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. METHODS: Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5αR type 1 (SRD5A1), 5αR type 2 (SRD5A2), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 20α-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. RESULTS: Expression of 5αR1 and 5αR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3α-HSO2, 3α-HSO3 and 20α-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5αR1 and 5αR2 were about 35–85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5αR were significantly higher than the ratios for the HSOs. CONCLUSIONS: The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5αR1) and SRD5A2 (5αR2) is elevated, and expression of AKR1C1 (20α-HSO), AKR1C2 (3α-HSO3) and AKR1C3 (3α-HSO2) is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5αP and decreases in mitogen/metastasis inhibiting 3αHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing protocols to prevent or reverse the changes in progesterone metabolism associated with breast cancer
Postnatal PPARδ Activation and Myostatin Inhibition Exert Distinct yet Complimentary Effects on the Metabolic Profile of Obese Insulin-Resistant Mice
BACKGROUND: Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. METHODOLOGY/PRINCIPAL FINDINGS: Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. CONCLUSIONS/SIGNIFICANCE: The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM
- …