research

Bacterial Respiration of Arsenate and Its Significance in the Environment

Abstract

Although arsenic is a trace element in terms of its natural abundance, it nonetheless has a common presence within the earth's crust. Because it is classified as a group VB element in the periodic table, it shares many chemical and biochemical properties in common with its neighbors phosphorus and nitrogen. Indeed, in the case of this element's most oxidized (+5) oxidation state, arsenate [HAsO_4^(2-) or As (V)], its toxicity is based on its action as an analog of phosphate. Hence, arsenate ions uncouple the oxidative phosphorylation normally associated with the enzyme glyceraldehyde 3-phosphate dehydrogenase, thereby preventing the formation ofphosphoglyceroyl phosphate, a key high-energy intermediate in glycolysis. To guard against this, a number of bacteria possess a detoxifying arsenate reductase pathway (the arsC system) whereby cytoplasmic enzymes remove internal pools of arsenate by achieving its reduction to arsenite [H_2AsO_3- or As (III)]. However, because the arsenite product binds with internal sulfhydryl groups that render it even more toxic than the original arsenate, efficient arsenite efflux from the cell is also required and is achieved by an active ion ''pumping'' system (1). The details of this bacterial arsenic detoxification phenomenon have been well established in the literature, and Chapter 10 in this volume provided a thorough review. Here, we discuss bacterial respiration of arsenate and its significance in the environment. As a biological phenomenon, respiratory growth on arsenate is quite remarkable, given the toxicity of the element. Moreover, the consequences of microbial arsenate respiration may, at times, have a significant impact on environmental chemistry

    Similar works