582 research outputs found
A reduced model for shock and detonation waves. II. The reactive case
We present a mesoscopic model for reactive shock waves, which extends a
previous model proposed in [G. Stoltz, Europhys. Lett. 76 (2006), 849]. A
complex molecule (or a group of molecules) is replaced by a single
mesoparticle, evolving according to some Dissipative Particle Dynamics.
Chemical reactions can be handled in a mean way by considering an additional
variable per particle describing a rate of reaction. The evolution of this rate
is governed by the kinetics of a reversible exothermic reaction. Numerical
results give profiles in qualitative agreement with all-atom studies
Equilibrium Sampling From Nonequilibrium Dynamics
We present some applications of an Interacting Particle System (IPS)
methodology to the field of Molecular Dynamics. This IPS method allows several
simulations of a switched random process to keep closer to equilibrium at each
time, thanks to a selection mechanism based on the relative virtual work
induced on the system. It is therefore an efficient improvement of usual
non-equilibrium simulations, which can be used to compute canonical averages,
free energy differences, and typical transitions paths
The longitudinal link between popularity, likeability, fear of negative evaluation and social avoidance across adolescence
This study investigated the longitudinal bidirectional associations between likeability, popularity, fear of negative evaluation, and social avoidance, to aid in preventing the negative consequences and persistent trajectories of low social status and heightened social anxiety. In total, 1741 adolescents in grades 7–9 participated at 3 yearly waves. A self-report questionnaire measured fear of negative evaluation. Peer nominations assessed likeability, popularity, and social avoidance. Lower popularity predicted more avoidance, and vice versa. More avoidance was related to lower likeability over time. Being less popular and/or more liked by peers, increased fear of negative evaluation. Support for a transactional model between social anxiety and social status was found, but distinguishing different social status and social anxiety components is necessary
Anomalous diffusion for a class of systems with two conserved quantities
We introduce a class of one dimensional deterministic models of energy-volume
conserving interfaces. Numerical simulations show that these dynamics are
genuinely super-diffusive. We then modify the dynamics by adding a conservative
stochastic noise so that it becomes ergodic. System of conservation laws are
derived as hydrodynamic limits of the modified dynamics. Numerical evidence
shows these models are still super-diffusive. This is proven rigorously for
harmonic potentials
Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example
We study a simple system described by a 2x2 Hamiltonian and the evolution of
the quantum states under the influence of a perturbation. More precisely, when
the initial Hamiltonian is not degenerate,we check analytically the validity of
the adiabatic approximation and verify that, even if the evolution operator has
no limit for adiabatic switchings, the Gell-Mann and Low formula allows to
follow the evolution of eigenstates. In the degenerate case, for generic
initial eigenstates, the adiabatic approximation (obtained by two different
limiting procedures) is either useless or wrong, and the Gell-Mann and Low
formula does not hold. We show how to select initial states in order to avoid
such failures.Comment: 6 pages, 2 figure
A Latent Propriospinal Network Can Restore Diaphragm Function After High Cervical Spinal Cord Injury
Spinal cord injury (SCI) above cervical level 4 disrupts descending axons from the medulla that innervate phrenic motor neurons, causing permanent paralysis of the diaphragm. Using an ex vivo preparation in neonatal mice, we have identified an excitatory spinal network that can direct phrenic motor bursting in the absence of medullary input. After complete cervical SCI, blockade of fast inhibitory synaptic transmission caused spontaneous, bilaterally coordinated phrenic bursting. Here, spinal cord glutamatergic neurons were both sufficient and necessary for the induction of phrenic bursts. Direct stimulation of phrenic motor neurons was insufficient to evoke burst activity. Transection and pharmacological manipulations showed that this spinal network acts independently of medullary circuits that normally generate inspiration, suggesting a distinct non-respiratory function. We further show that this “latent” network can be harnessed to restore diaphragm function after high cervical SCI in adult mice and rats
Polarized interacting exciton gas in quantum wells and bulk semiconductors
We develop a theory to calculate exciton binding energies of both two- and
three-dimensional spin polarized exciton gases within a mean field approach.
Our method allows the analysis of recent experiments showing the importance of
the polarization and intensity of the excitation light on the exciton
luminescence of GaAs quantum wells. We study the breaking of the spin
degeneracy observed at high exciton density . Energy
level splitting betwen spin +1 and spin -1 is shown to be due to many-body
inter-excitonic exchange while the spin relaxation time is controlled by
intra-exciton exchange.Comment: Revtex, 4 figures sent by fax upon request by e-mai
Sperm design and variation in the New World blackbirds (Icteridae)
Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed
Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves
Individual self-assembled Quantum Dots and Quantum Posts are studied under
the influence of a surface acoustic wave. In optical experiments we observe an
acoustically induced switching of the occupancy of the nanostructures along
with an overall increase of the emission intensity. For Quantum Posts,
switching occurs continuously from predominantely charged excitons (dissimilar
number of electrons and holes) to neutral excitons (same number of electrons
and holes) and is independent on whether the surface acoustic wave amplitude is
increased or decreased. For quantum dots, switching is non-monotonic and shows
a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of
positively charged and neutral excitons is observed at high surface acoustic
wave amplitudes. These findings are explained by carrier trapping and
localization in the thin and disordered two-dimensional wetting layer on top of
which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts
where acoustically induced charge transport is highly efficient in a wide
lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure
- …