6 research outputs found

    Fighting the COVID-19 Infodemic:Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society

    Get PDF
    With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic has been declared one of the most important focus areas of the World Health Organization, with dangers ranging from promoting fake cures, rumors, and conspiracy theories to spreading xenophobia and panic. Addressing the issue requires solving a number of challenging problems such as identifying messages containing claims, determining their check-worthiness and factuality, and their potential to do harm as well as the nature of that harm, to mention just a few. To address this gap, we release a large dataset of 16K manually annotated tweets for fine-grained disinformation analysis that (i) focuses on COVID-19, (ii) combines the perspectives and the interests of journalists, fact-checkers, social media platforms, policy makers, and society, and (iii) covers Arabic, Bulgarian, Dutch, and English. Finally, we show strong evaluation results using pretrained Transformers, thus confirming the practical utility of the dataset in monolingual vs. multilingual, and single task vs. multitask settings

    Genetically defined elevated homocysteine levels do not result in widespread changes of DNA methylation in leukocytes

    Get PDF
    BACKGROUND:DNA methylation is affected by the activities of the key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves homocysteine. We investigated the effect of the well-known genetic variant associated with mildly elevated homocysteine: MTHFR 677C>T independently and in combination with other homocysteine-associated variants, on genome-wide leukocyte DNA-methylation. METHODS:Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of European ancestry from 12 cohort studies. Linear-mixed-models were used to study the association of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-associated SNPs, with genome-wide methylation. RESULTS:Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2, CRYM and FKBP5. CONCLUSIONS:Our results do not show widespread changes in DNA-methylation across the genome, and therefore do not support the hypothesis that mildly elevated homocysteine is associated with widespread methylation changes in leukocytes

    Homocysteine and DNA methylation: a review of animal and human literature

    No full text
    Homocysteine (Hcy) is a sulfur-containing non-protein forming amino acid, which is synthesized from methionine as an important intermediate in the one-carbon pathway. High concentrations of Hcy in a condition called hyperhomocysteinemia (HHcy) are an independent risk factor for several disorders including cardiovascular diseases and osteoporotic fractures. Since Hcy is produced as a byproduct of the methyltransferase reaction, alteration in DNA methylation is studied as one of the underlying mechanisms of HHcy-associated disorders. In animal models, elevated Hcy concentrations are induced either by diet (high methionine, low B-vitamins, or both), gene knockouts (Mthfr, Cbs, Mtrr or Mtr) or combination of both to investigate their effects on DNA methylation or its markers. In humans, most of the literature involves case-control studies concerning patients. The focus of this review is to study existing literature on HHcy and its role in relation to DNA methylation. Apart from this, a few studies investigated the effect of Hcy-lowering trials on restoring DNA methylation patterns, by giving a folic acid or B-vitamin supplemented diet. These studies which were conducted in animal models as well as humans were included in this review
    corecore