461 research outputs found

    Bedrock structural control on catchment scale connectivity and alluvial fan processes, High Atlas Mountains, Morocco.

    Get PDF
    Lithology is acknowledged to be an important internal catchment control on flow processes to adjacent alluvial fans. However, the role of inherited structural configurations (e.g.bedrock attitude) in catchment connectivity and sediment transport is rarely considered. We examine four young (,100-year-old) active tributary junction alluvial fan systems from the Dade`s Valley in the High Atlas of Morocco in terms of their catchment-scale connectivity, sediment transfer and resulting alluvial fan processes. The catchments occur on the same lithologies (limestones and interbedded mudstones), but experience different passive structural configurations (tilted and structurally thickened beds). The fan systems react differently to historical peak discharges (20–172 m3 s21). Catchments containing tectonically thickened limestone units develop slot canyons, which compartmentalize the catchment by acting as barriers to sediment transfer, encouraging lower sediment to water flows on the fans. Syn-dip catchments boost connectivity and sediment delivery from translational bedrock landslides as a result of steep channel gradients, encouraging higher sediment to water flows. By contrast, translational landslides in strike-oriented drainages disrupt longitudinal connectivity by constricting the valley width, while the gradients of the main channels are supressed by the attitude of the limestone beds, encouraging localised backfilling. This diminishes the sediment to water content of the resulting flows

    Fluvial archives of NW African climate and tectonic evolution, Atlas Mountains, central Morocco

    Get PDF
    The Atlas mountains in Morocco are a natural laboratory at the junction between the Atlantic Ocean (passive margin), the Mediterranean (subduction) and the African Craton. Here, interactions between the mantle and lithosphere, crustal compression and uplift have been recorded in river terraces, alluvial fans, drainage patterns, river long profiles, and in wedge-top & foreland sediments. Limited work on terraces in one of the catchments crossing the south Atlas thrust front has shown rates of incision are low and have been sustained since the Pleistocene. Dating of terraces using Optically Stimulated Luminescence, together with field sedimentology, links the formation of terraces in the Dades River to 100 ka climate cycles. Studies of tributary fans and fan sediments in terraces suggest coupling of hillslopes, tributaries and trunk streams vary across glacial-interglacial cycles and is geologically controlled. River long profiles extracted across the southern Atlas Mountains contain knickzones (areas of increased steepness), resulting from tectonically driven uplift. We will use newly acquired high resolution DEM data together with field mapping and Optically Stimulated Luminescence dating to constrain river terrace formation in High Atlas catchments draining into the Ouarzazate foreland basin. These data will be used to constrain further, the regional tectonic and climatic controls on river terrace formation. Integrating the terrace records with the other fluvial archives will enable challenging questions on tectonic surface processes, source-to-sink sedimentology and intra-plate tectonics to be tackled

    Catchment changes in response to tectonics and climate: using river terraces and DEM data in the southern High Atlas Mountains (Morocco)

    Get PDF
    Tectonics and climate drive the generation and transport of sediment in mountain rivers as these evolve over time. On a glacial-interglacial scale, in particular catchment reorganisation and catchment incision dynamics control these processes, and affect fan deposition in sedimentary basins. The Atlas Mountains in Morocco exhibit ongoing catchment reorganisation and an abundance of river terraces recording glacial fluvial aggradation and interglacial-glacial incisional periods, opening up insight into the processes behind catchment evolution over geological timescales. Topography and river profiles across drainage divides are similar in a stable divide, and if they are unequal they indicate active catchment reorganisation. When reorganisation occurs, it results in irregularities in river long profiles and changes in river valley erosion. River strath terraces are formed by transition between valley widening and downcutting of terraces in response to local divergence of sediment-transport capacity 3. Consequently, they record changes in catchments due to river capture, climate and tectonics. The presence of river terraces enables catchment processes over time to be investigated. A combination of remote sensing and field mapping and logging was completed in May 2018. River terraces have been mapped with newly released high resolution DEM data in the southern High Atlas in Morocco, and additional surveying was done in the field. Geomorphological indices suggest river catchment capture is a key control on the development of drainage networks. River long profiles suggest tectonic controls have also influenced landscape development over the last few million years. Logging of terrace sediments together with high-resolution sampling for OSL dating enables these catchment-wide effects to be compared with paleo-hydrological and sediment transport characteristics of the fluvial system. The combination of geomorphological DEM and sedimentological field data enables us to explore drivers of catchment change, and will contribute to the wider understanding of fluvial system response to climate and tectonic controls, and to its transport into the sedimentary record

    Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt

    Get PDF
    Numerical model simulations and experiments have suggested that when migration of the main drainage divide occurs in a mountain belt, it can lead to the rearrangement of river catchments, rejuvenation of topography, and changes in erosion rates and sediment flux. We assess the progressive mobility of the drainage divide in three lithologically and structurally distinct groups of bedrock in the High Atlas (NW Africa). The geological age of bedrock and its associated tectonic architecture in the mountain belt increases from east to west in the study area, allowing us to track both variations in rock strength and structural configuration which influence drainage mobility during erosion through an exhuming mountain belt. Collection of field derived measurements of rock strength using a Schmidt hammer and computer based extraction of river channel steepness permit estimations of contrasts in fluvial erodibilities of rock types. The resulting difference in fluvial erodibility between the weakest and the strongest lithological unit is up to two orders of magnitude. Published evidence of geomorphic mobility of the drainage divide indicates that such a range in erodibilities in horizontal stratigraphy of the sedimentary cover may lead to changes in erosion rates as rivers erode through strata, leading to drainage divide migration. In contrast, we show that the faulted and folded metamorphic sedimentary rocks in the centre of the mountain belt coincide with a stable drainage divide. Finally, where the strong igneous rocks of the crystalline basement are exposed after erosion of the covering meta-sediments, there is a decrease in fluvial erodibility of up to a factor of three, where the drainage divide is mobile towards the centre of the exposed crystalline basement. The mobility of the drainage divide in response to erosion through rock-types and their structural configuration in a mountain belt has implications for the perception of autogenic dynamism of drainage networks and fluvial erosion in mountain belts, and the interpretation of the geomorphology and downstream stratigraphy.</p

    Protection against Experimental Melioidosis with a Synthetic manno-Heptopyranose Hexasaccharide Glycoconjugate

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Melioidosis is an emerging infectious disease caused by Burkholderia pseudomallei and is associated with high morbidity and mortality rates in endemic areas. Antibiotic treatment is protracted and not always successful; even with appropriate therapy, up to 40% of individuals presenting with melioidosis in Thailand succumb to infection. In these circumstances, an effective vaccine has the potential to have a dramatic impact on both the scale and the severity of disease. Currently, no vaccines are licensed for human use. A leading vaccine candidate is the capsular polysaccharide consisting of a homopolymer of unbranched 1→3 linked 2-O-acetyl-6-deoxy-β-d-manno-heptopyranose. Here, we present the chemical synthesis of this challenging antigen using a novel modular disaccharide assembly approach. The resulting hexasaccharide was coupled to the nontoxic Hc domain of tetanus toxin as a carrier protein to promote recruitment of T-cell help and provide a scaffold for antigen display. Mice immunized with the glycoconjugate developed IgM and IgG responses capable of recognizing native capsule, and were protected against infection with over 120 × LD50 of B. pseudomallei strain K96243. This is the first report of the chemical synthesis of an immunologically relevant and protective hexasaccharide fragment of the capsular polysaccharide of B. pseudomallei and serves as the rational starting point for the development of an effective licensed vaccine for this emerging infectious disease.This work was funded by the United Kingdom Ministry of Defence. The mass spectral data described here were acquired on an Orbitrap Fusion mass spectrometer funded by National Institutes of Health grant 1S10OD010645-01A1

    Constraining a model of punctuated river incision for Quaternary strath terrace formation

    Get PDF
    In the small fraction of Earth's surface with the highest erosion rates such as the Alps and Himalayas quantifying rates of incision, rock uplift and inferring climatic controls on the landscape can be relatively straightforward once the ages of river terraces cut in bedrock (strath terraces) are constrained. However, in many mid to lower relief settings that are more typical of mountain belts worldwide, periods of net river incision and riverbed lowering are relatively short (punctuated), interrupted by long periods of sediment aggradation or stasis. We define a conceptual model of punctuated river incision and strath terrace formation for the calculation of incision and rock uplift rates, and recommend strategies for geochronological sampling and interpretation. An approach using OSL dating of terrace gravels allows us to constrain a detailed ~150 kyr history of punctuated river incision and strath terrace formation spanning two stratigraphic landform levels in the High Atlas Mountains (NW Africa). Extensive preservation and exposure of strath-top gravels, within a post-orogenic setting unaffected by eustatic influences, enables the derivation of rates of base-level fall, integrated over periods of strath-top aggradation and incision, that are consistent with independently constrained regional rock uplift rates. Combining a punctuated river incision model with our well-constrained terrace formation history allows us to demonstrate how assumptions concerning Quaternary river incision and aggradation can lead to the problematic Sadler Effect, an apparent dependence of incision rates on measured time interval. Subsequently, we demonstrate that an approach to reinterpreting previously published data using the punctuated incision model, even when combined with limited terrace age data, results in more consistent conclusions about rates of river incision, rock uplift and base-level lowering across the mountain belt. Our recommendations for sampling strategies to constrain rock uplift rates require samples to be taken just above the strath surface, and in addition towards the top of the deposit for river incision rates. In a setting with punctuated river incision and strath terrace formation, both rock uplift and incision rates require burial dates, as exclusive use of abandonment ages will not yield constraints on accurate rates of rock uplift or incision. Furthermore, we find that only with multiple along-stream locations and multiple burial dates in each terrace deposit, could a reliable climatic signal be extracted: this signal would not have shown up in terrace abandonment ages such as those derived from cosmogenic exposure dates. The demonstrated effects of assumptions about strath terrace formation, and the recommended approaches for sampling and interpretation, have implications for those attempting to constrain palaeoclimatic, tectonic, and geomorphic histories from strath terrace records in regions exhibiting punctuated river incision

    The Dental Neglect Scale in adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dental neglect has been found to be related to poor oral health, a tendency not to have had routine check-ups, and a longer period of time since the last dental appointment in samples of children and adults. The Dental Neglect Scale (DNS) has been found to be a valid measure of dental neglect in samples of children and adults, and may be valid for adolescents as well. We administered the DNS to a sample of adolescents and report on the relationships between the DNS and oral health status, whether or not the adolescent has been to the dentist recently for routine check-ups, and whether or not the adolescent currently goes to a dentist. We also report the internal and test-retest reliabilities of the DNS in this sample, as well as the results of an exploratory factor analysis.</p> <p>Methods</p> <p>One hundred seventeen adolescents from seven youth groups in the Seattle-Tacoma metropolitan area (Washington State, U.S.) completed the DNS and indicated whether they currently go to a dentist, while parents indicated whether the adolescent had a check-up in the previous three years. Adolescents also received a dental screening. Sixty six adolescents completed the questionnaire twice. T-tests were used to compare DNS scores of adolescents who have visible caries or not, adolescents who have had a check-up in the past three years or not, and adolescents who currently go to a dentist or not. Internal reliability was measured by Cronbach's alpha, and test-rest reliability was measured by intra-class correlation. Factor analysis (Varimax rotation) was used to examine the factor structure.</p> <p>Results</p> <p>In each comparison, significantly higher DNS scores were observed in adolescents with visible caries, who have not had a check-up in the past three years, or who do not go to a dentist (all p values < 0.05). The test-retest reliability of the DNS was high (ICC = 0.81), and its internal reliability was acceptable (Cronbach's alpha = 0.60). Factor analysis yielded two factors, characterized by home care and visiting a dentist.</p> <p>Conclusion</p> <p>The DNS appears to operate similarly in this sample of adolescents as it has in other samples of children and adults.</p

    Reduced Exercise Tolerance and Pulmonary Capillary Recruitment with Remote Secondhand Smoke Exposure

    Get PDF
    RATIONALE: Flight attendants who worked on commercial aircraft before the smoking ban in flights (pre-ban FAs) were exposed to high levels of secondhand smoke (SHS). We previously showed never-smoking pre-ban FAs to have reduced diffusing capacity (Dco) at rest. METHODS: To determine whether pre-ban FAs increase their Dco and pulmonary blood flow (Qc) during exercise, we administered a symptom-limited supine-posture progressively increasing cycle exercise test to determine the maximum work (watts) and oxygen uptake (VO2) achieved by FAs. After 30 min rest, we then measured Dco and Qc at 20, 40, 60, and 80 percent of maximum observed work. RESULTS: The FAs with abnormal resting Dco achieved a lower level of maximum predicted work and VO2 compared to those with normal resting Dco (mean±SEM; 88.7±2.9 vs. 102.5±3.1%predicted VO2; p = 0.001). Exercise limitation was associated with the FAs' FEV(1) (r = 0.33; p = 0.003). The Dco increased less with exercise in those with abnormal resting Dco (mean±SEM: 1.36±0.16 vs. 1.90±0.16 ml/min/mmHg per 20% increase in predicted watts; p = 0.020), and amongst all FAs, the increase with exercise seemed to be incrementally lower in those with lower resting Dco. Exercise-induced increase in Qc was not different in the two groups. However, the FAs with abnormal resting Dco had less augmentation of their Dco with increase in Qc during exercise (mean±SEM: 0.93±0.06 vs. 1.47±0.09 ml/min/mmHg per L/min; p<0.0001). The Dco during exercise was inversely associated with years of exposure to SHS in those FAs with ≥10 years of pre-ban experience (r = -0.32; p = 0.032). CONCLUSIONS: This cohort of never-smoking FAs with SHS exposure showed exercise limitation based on their resting Dco. Those with lower resting Dco had reduced pulmonary capillary recruitment. Exposure to SHS in the aircraft cabin seemed to be a predictor for lower Dco during exercise
    • …
    corecore