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ABSTRACT 

 One of the challenges facing Earth Scientists is to determine the extent to which geomorphic 

features can be used to extract tectonic signals from landscapes.  Here, we quantitatively analyse 

the long profiles of rivers that drain southwards across the South Atlas Fault (SAF), a thrust fault 

that forms the southern margin of the High Atlas Mountains in Morocco, to derive new data on 

the Late Cenozoic activity of this fault system.  River long profiles were extracted for 32 major 

rivers flowing southwards into the Ouarzazate Basin.  Of these, eleven exhibit concave-up river 

profiles with a mean concavity of 0.64 and normalized steepness indices in the range 47.5 – 

219.0 m
0.9

.  By contrast, 21 rivers exhibit at least one knickpoint upstream of the thrust front.  

Knickpoint height varies from 100 – 1300 m, with calculated incision at the range bounding fault 

ranging from 80-900 m, despite the drainage areas upstream of the knickpoint ranging over 

several orders of magnitude.  In map view, knickpoint locations generally plot along sub-parallel 

lines and there are no obvious relationships with lithological units for knickpoints exhibiting 

slope-break morphology.  Channel reaches below slope-break knickpoints have higher mean 

concavities (0.76) than above the knickpoint indicative.  This observation combined with a 

lithological or river-capture origin for the knickpoints having been ruled out suggests that an 

increase in uplift rate along a planar fault zone during the Plio-Quaternary caused the initiation 

of the transient response (i.e., knickpoint formation) to a change in base-level observed in the 

river profiles.  This uplift event can be correlated to the convective removal of the lithospheric 

root to the Atlas Mountains resulting in the anomalously high topography at the present day. 
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INTRODUCTION 

 

Figure 1. Overview map of Morocco showing the generalised geology of the Atlas orogenic system and 

associated major faults, with the Dades-Draa river system also shown (modified from Stokes et al., 2008).  

Box indicates areas shown in figures 2 and 3. 

  

The High Atlas Mountains are a Cenozoic mountain belt trending ENE-WSW from 

Morocco in the west to Tunisia in the east (Fig. 1).  Extending for over 2000 km, these mountains 

have the most significant relief in North Africa rising to over 4000 m in elevation.  Alpine 

compression resulted in the inversion and uplift of Mesozoic rift basins between the Late Eocene 

and Quaternary (e.g., Frizon de Lamotte et al., 2000; Gomez et al., 2000; Teixell et al., 2003; 

Balestreri et al., 2009), developing a bivergent mountain chain with the South Atlas Fault (SAF) 

and the North Atlas Fault (NAF) as the southern and northern margins, respectively (Fig. 1).  These 

two reverse faults accommodate a significant proportion of the shortening across the High Atlas, 

with the SAF generally having accommodated more Cenozoic shortening than the NAF (Sebrier et 

al., 2006).  However, the Cenozoic tectonic shortening across the High Atlas only ranges from ~ 15 

– 32% increasing eastwards along strike (Beauchamp et al., 1999; Teixell et al., 2003), insufficient 

to account for all of the high topography of this and surrounding areas.  This anomalously high 

topography is considered to be isostatically uncompensated owing to the underlying lithosphere 

either being hot, thinned or delaminated, with perhaps as much as 1000 m of topography supported 

by underlying mantle processes (Seber et al., 1996; Ramdani, 1998; Teixell et al., 2003; 2005; 

Missenard et al., 2006; Miller et al., 2014). Furthermore, the partitioning of the growth of the High 

Atlas between recent (i.e., Quaternary) and pre-Miocene (> 25 Ma) uplift is poorly constrained.  For 

example, Gomez et al., (2000) argues that all uplift has taken place since c. 20 Ma.  This is 
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supported by thermochronology indicating that the present-day topographic relief was completely 

generated in the last 15 - 20 Ma (Barbero et al., 2007).  Yet, this result is at odds with geological 

constraints on uplift that suggest that two pulses of surface uplift have occurred, one > 25 Ma and 

further uplift in the Plio-Quaternary (< 5 Ma), which correlate to the deposition of coarse-clastic 

material in the foreland(El Harfi et al., 2001; 2006).  Additionally, Babault et al., (2008) and 

Balestrieri et al., (2009) suggest c. 1000 m of surface uplift has taken place during the Plio-

Quaternary period based upon drainage reorganisation and fission-track analysis.  

Current models of the development of the High Atlas are based primarily on geological 

methods. However, geomorphological approaches for examining tectonics and mountain belt 

development provide hitherto untried approaches for elucidating the styles, patterns and timing of 

High Atlas development.  A major focus of current tectonic geomorphological research is to 

develop and apply methodologies to extract information about past and present tectonic activity 

from the landscape, principally by using river long profiles that have either reached a steady state 

(e.g., Whipple and Tucker, 1999; Synder et al., 2000; Wohl and Merritt, 2001; Kirby et al., 2003) or 

that exhibit a ‘transient response’ to a change in base level (e.g., Whipple and Tucker, 1999; 2002; 

Whipple, 2004; Whittaker et al., 2007; 2008; Boulton and Whittaker, 2009; Whittaker and Boulton, 

2012).  The river long profile plots channel elevation against distance downstream from the 

drainage divide and is sensitive not only to increases or decreases in tectonic uplift but also to 

variations in rock strength (Phillips and Lutz, 2008), river capture (Antón et al., 2012; 2014), sea-

level controlled base-level change (Crosby and Whipple, 2006), climatic and other environmental 

landscape changes (Burbank and Anderson, 2001; Schumm, 2005).   

Given the contradictions on the age and timing of uplift in the High Atlas, this study aims to 

elicit information on the recent uplift and activity of the region using the fluvial geomorphology of 

transverse drainages, since the recent 1 km of uplift should be recorded by a geomorphological 

landscape response.  After outlining the regional geology, geomorphology and background to river 

profile analyses, we present geomorphic indices extracted from digital elevation models (DEMs) 

from 32 rivers draining the southern margin of the High Atlas Mountains.  Competing controls on 

river profile geometry (lithology, river capture and uplift) are then compared and discussed in light 

of the results and implications for the tectonic activity of the central High Atlas and SAF drawn. 

 

GEOLOGICAL BACKGROUND 

 South of the High Atlas, two foreland basins have developed during the Cenozoic as a result 

of lithospheric flexure in response to crustal loading (Beauchamp et al., 1999).  These are the Souss 

Basin in the west and the Ouarzazate Basin in the east, separated by a topographic high of the 

Siroua Plateau (Fig. 1).  The Ouarzazate Basin fill is < 1 km thick, composed of Mio-Pliocene 

alluvial, fluvial and lacustrine sediments (e.g., Saadi et al., 1978; Gorler et al., 1988; El Harfi et al., 

2001; Teson et al., 2010).  Palaeogeographic reconstructions of the Mio-Pliocene foreland basin fill 

reveal an internally drained lacustrine basin bordered by alluvial fans and transverse fluvial valleys 

that drained the dominant High and Anti-Atlas reliefs to the north and south (Gorler et al., 1988; El 

Harfi et al., 2001). 
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Figure 2. Simplified geological map of the Ouarzazate region showing the main geological units present, key 

locations, trunk rivers and (where present) knickpoints (modified from the Saadi et al., 1978). 

Forming the northern margin of the Ouarzazate Basin, the SAF is a major structural feature 

that runs continuously along the length of the mountain chain.  Structurally, the SAF is a complex 

fault zone composed of mainly thick-skinned deformation resulting from the inversion of Mesozoic 

normal faults, with minor thin-skinned deformation (Beauchamp et al., 1999; Teixell et al., 2003; El 

Harfi et al., 2006; Teson and Teixell, 2008).  Continued faulting during the Miocene-Pleistocene 

resulted in foreland basin segmentation and the creation of a series of small wedge-top basins (Ait 

Kandoula in the west and Ait Sedratt in the east) to the north of the frontal thrust system (Fig. 2; 

Gorler et al., 1988; El Harfi et al., 2001; 2006; Teson and Teixell, 2008). 

The SAF is considered to have accommodated most of the Cenozoic tectonic shortening 

across the High Atlas Mountains and is the focus of active deformation (Teixell et al., 2003; Sebrier 

et al., 2006; Pastor et al., 2012a).  Although no direct estimates are available for the slip-rate along 

the thrust front in the Ouarzazate Basin, localised deformation of Quaternary terraces gives some 
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indication. Sebrier et al. (2006) document a faulted ramp anticline deforming their Q3 alluvial fan 

surface.  Although, this surface was not dated using absolute methods in their study, Sebrier et al. 

(2006) estimate a minimum shortening rate of 0.04 mmyr
-1

 and a slip rate of 0.05-0.15 mmyr
-1

 

based upon a 12 m vertical offset and a maximum age of 5 Ma for the SAF.  Subsequently, 

Arboleya et al. (2008) used 
10

Be cosmogenic (TCN method) surface exposure dating to determine 

the chronology of a series of alluvial fan and river terrace surfaces, several of which they noted to 

be deformed.  Their Q2 terrace, with a calculated exposure age of 163-174 ka, was observed to be 

folded above a blind thrust causing a 20 m vertical offset of the terrace surface (Arboleya et al., 

2008) equating to a minimum uplift rate of ~ 0.11 mmyr
-1

.  Whereas, higher uplift rates of 0.2 – 0.3 

mmyr
-1 

have been derived by Pastor et al. (2012a) from deformed terraces of the same age.   

Active faulting is also supported by the distribution of generally shallow (< 70 km deep; 

Medina and Cherkaoui, 1991) earthquakes in the Atlas Mountains. Focal mechanisms indicate ~ 

NE-SW compressive to transpressive deformation along the edges of the range, although many 

earthquakes are also distributed within the mountains along other structural lineaments (Medina and 

Cherkaoui, 1991; Morel and Meghraoui, 1996; USGS, 2010; Onana et al., 2011).  The most 

significant recorded earthquake along the thrust front was the 1960 Agadir earthquake (M = 5.9) 

situated near the Moroccan coast but Boumalne du Dades, in the study area, has also experienced 

earthquakes of M = 4.7 and 4.9 at or near the thrust front (Medina and Cherkaoui, 1991).   

 

GEOMORPHOLOGIC BACKGROUND  

The River Dades forms the principal drainage in the Ouarzazate basin. The headwaters of 

the river rise at ~3200 m and then drains SW (oblique to the trend of the orogeny), cutting a deeply 

incised ~225 km long route through the fold-thrust belt, wedge top basin, thrust front and foreland 

regions of the south-central part of the High Atlas orogenic system (Fig. 2). In the foreland basin, 

the Dades forms a transverse drainage fixed against the topographic relief of the northern margin of 

the Anti-Atlas Mountains (Stokes et al., 2008; Babault et al., 2012). Here, the Dades is joined by a 

series of major south-flowing transverse tributaries such as the Madri and the M’Goun (Fig. 3). In 

the southwest section of the foredeep, the Dades turns SE and crosses Pre-Cambrian and Palaeozoic 

bedrock of the Anti-Atlas Mountains through the Draa gorge (Fig. 1). To the east, rivers such as the 

Todrha drain into the Sahara Desert and to the west rivers drain into the Souss Basin (Fig. 1).   

The Quaternary development of the River Dades and tributaries is recorded by a series of 

inset river terraces, alluvial fan surfaces and stepped fan pediments (Stablein, 1988; Arboleya et al. 

2008; Pastor et al., 2012b), and in the formation of deeply dissected river gorges such as the Dades 

gorge (Stokes et al., 2008). The overall incisional pattern of the drainage network, including river 

gorge development, is considered to primarily reflect the long term tectonic uplift of the High Atlas 

orogenic system (Stablein, 1988; Stokes et al, 2008; Babault et al., 2012). Superimposed onto the 

uplift trend are sedimentation and erosion patterns, such as piedmont stream capture, linked to 

Quaternary climatic fluctuations (Arboleya et al., 2008; Pastor et al., 2012b).  Evidence for cirques, 

troughs, moraines and other related features have been recorded in the Dades watershed area above 

3 km altitude (Hughes et al., 2004) suggesting periodic glacial and periglacial activity within the 

south-central High Atlas region. This undoubtedly would have played some role in influencing 

variations in sediment supply and flood regime, which in turn would have impacted upon fluvial 
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landscape aggradation and dissection patterns downstream at lower altitudes. Finally, the incision 

history of the Dades could also reflect relative base-level adjustments to basin scale capture of the 

Dades by the Draa, resulting in a switch from an internally drained Mio-Pliocene foredeep basin to 

the externally drained modern drainage network (Gorler et al., 1988). The timing and nature of the 

capture mechanism have yet to be studied in detail, but cosmogenic exposure dating of the highest 

fan surface along the northern basin margin by Arboleya et al. (2008) suggests that basin incision 

commenced after 278 ka.  The amount of post-capture incision is unclear.  However, alluvial 

gravels preserved along the top edge of the Draa Gorge suggest < 200 m of incision (Arboleya et 

al., 2008) has occurred across the Proterozoic-Palaeozoic Anti-Atlas basement since the switch 

from internal to external drainage. The capture-related base-level lowering could be in part driving 

the incision observed in the immediately adjacent upstream foreland basin region.   

 
Figure 3. STRM DEM (USGS, 2006) of the area indicated in Figure 1, indicating the river long profiles 

extracted for this study.  Each river is numbered corresponding to data in Table 1 and the long profile of 

selected rivers shown in figures 7, 8, 10. 

RIVER PROFILE ANALYSIS  

Steady-state profiles 

Three broad models describing fluvial erosion have been developed: detachment-limited; transport-

limited and hybrid models (e.g., Tucker and Whipple, 2002; Whipple and Tucker, 2002).  In 

detachment-limited systems the steady-state (where erosion equals uplift) river gradient is 

controlled by the erodibility of the channel substrate and the regional uplift rate or base-level fall; 

these rivers are characteristically bedrock rivers.   By contrast, the channel gradient in transport-

limited systems is determined by the ability of the river to transport the sediment load, and such 

rivers are typically alluvial channels with a loose sediment cover in bars and banks.  Hybrid rivers 

are intermediate cases between the end members of transport- and detachment-limited models, 

where the sediment flux and the ability to erode the bedrock substrate of the channel determines the 

channel gradient; both bedrock and alluvial reaches will be present along the course of the river. 
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These simple of models of river behaviour predict power law relationships between local 

channel gradients (S, slope) and upstream drainage area (A) in the form:    

        

   
  
   S = ksA

-Θ       (1) 

     

Both S and A can be easily extracted from digital elevation models (DEMs) from the analysis of 

slope-area plots. Subsequently, the concavity index, Θ, and the steepness index, ks, can be derived 

from the regression of slope and area data.  As this general power-law function can be derived from 

the erosion law of all three river models (Whipple and Tucker, 2002; Kirby et al., 2003) the 

concave-up, presumed steady-state river long profile is identical for all types of river if the 

concavity and steepness are the same.   

As eq [1] subsumes within ks the uplift rate of a given area [ks = (uplift/coefficient of 

erosion)
1/n

] this term should vary systematically with uplift at steady state (Whipple and Tucker, 

1999; 2002), a conclusion that has been supported by a range of empirical studies (i.e., Snyder et 

al., 2000; Kirby and Whipple, 2001; Safran et al., 2005; DiBiase et al., 2009; Cyr et al., 2010) and 

has been applied in many areas to examine both the suitability of erosion laws and to determine 

uplift rates (e.g., Tucker, 2009; Tucker and Hancock, 2010; Brocklehurst, 2010).  Where there is no 

rock uplift, and in the absence of other confounding factors, the steepness index declines over time 

and may attain a low value set by the properties of the bedrock substrate (Whipple, 2004).  

 

Rivers with transient features  

Not all river long profiles exhibit a graded, concave-up profile with many having 

discontinuities in the channel profiles, which are identified on long profiles as convexities and on 

slope-area plots as breaks in the power-law scaling (e.g., Kirby and Whipple, 2012).  In general the 

presence of knickpoints is indicative of a river undergoing a transient response to a perturbation 

where the knickpoint is not fixed on a particular feature but migrates upstream over time as a 

transient wave of incision (e.g., Harsbargen and Paola, 2000; Bishop et al., 2005; Wobus et al., 

2006; Crosby and Whipple, 2008; Whittaker et al., 2008; Jansen et al., 2011; Castillo et al., 2013).      

Knickpoints develop along rivers described by the detachment-limited and hybrid models as 

the result of one or more factors that may not be independent or mutually exclusive.  These are: 

incision resulting from base-level lowering (either a local tectonic perturbation or regionally due to 

sea-level fall); variations in bedrock resistance; influence of bedrock structure; sediment input from 

hill slopes or tributaries; non-fluvial erosional processes such as debris flows; effects of bedload 

either as an erosive tool or mantling cover, river confluences, climatic fluctuations, or human 

modifications (Burbank and Anderson, 2001; Schumm, 2005; Phillips and Lutz, 2008).  By 

contrast, transport-limited rivers generally respond in a diffusive manner to base-level fall and uplift 

and thus do not develop a knickpoint making it difficult to distinguish between steady-state and 

transient profiles in this category of river (Whipple and Tucker, 2002). 
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Figure 4. Schematic diagrams showing the river long profile and slope-area plot, respectively, for: a / b) an 

unperturbed concave-up river, the dashed line indicates the transition from debris flow to fluvial processes, 

note that downstream of this break. 

 

The temporal and spatial characteristics of the perturbation will determine the fluvial 

response to the forcing.  A discrete event, such as a locally resistant substrate, a debris flow or 

landslide, will cause a deviation away from equilibrium (Kirby and Whipple, 2012; Walsh et al., 

2012), generating a ‘vertical-step knickpoint’ (Kirby and Whipple, 2012) that can be recognised on 

a slope-area plot as a spike in slope values (Fig. 4).  These knickpoints are often anchored in space 

and have no direct tectonic significance (Kirby and Whipple, 2012).     

By contrast, ‘slope-break knickpoints’ (Kirby and Whipple, 2012) represent a break in the 

slope-area scaling (Fig. 4) and develop as a response to a persistent change in forcing that drives the 

fluvial system towards a new equilibrium (Tucker and Whipple, 2002).  Such forcing mechanisms 

may be due to the initiation of faulting or to a change in slip rate along a fault and as such slope-

break knickpoints enable the interpretation of tectonics in erosional landscapes (Wobus et al., 2006; 

Kirby and Whipple, 2012). The identification of linear alignments of slope-break knickpoints have 

led to the recognition of previously unknown geological structures (i.e., Wobus et al., 2003; Kirby 

et al., 2003; Kirby and Ouimet, 2011) as well as implying changes in uplift rate across known 

structures (e.g., Schoenbohm et al., 2004; Kirby et al., 2007; Hoke et al., 2007).  Significantly, this 

class of knickpoint normally migrates upstream at a constant vertical rate (Whipple and Tucker, 

1999; Neimann et al., 2001) but the horizontal celerity is a primarily a function of drainage area, 

thus as the size of the drainage area decreases so does the velocity of the knickpoint migration 

(Whipple and Tucker, 1999; Crosby and Whipple, 2006; Berlin and Anderson, 2007; Harkins et al., 

2007). Therefore, knickpoints associated with persistent changes in rock uplift and should occur at a 

constant elevation if they have migrated at a constant rate and assuming that the drainage network 

was in equilibrium prior to perturbation (e.g., Wobus et al., 2006; Harkins et al., 2007; Cook et al., 

2009).  However, a number of factors can cause deviations from the idealised response, such as 

spatial variations in uplift rates, climatic variation or the absence of pre-existing steady-state, 
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resulting in a dispersion of knickpoint heights and differences in knickpoint celerity (Harkins et al., 

2007; Boulton and Whittaker, 2009; Schildgen et al., 2012; Whittaker and Boulton, 2012; Castillo 

et al., 2013).   

Recently, Regalla et al., (2013) also recognised that slope-break knickpoints may be 

localised above stationary variations in rock uplift, such as above ramp-flat transitions along thrusts 

(.  In addition, field studies in New Zealand suggest that the knickpoint elevation can also be a 

function of catchment drainage areas where knickpoints get pinned at a critical threshold value 

when the catchment area upstream of the knickpoint gets too small to drive further migration 

(Crosby and Whipple, 2006).  Despite differing controls on formation, knickpoints will separate 

areas of the landscape responding to the new boundary conditions from areas that have not yet 

adjusted (Wobus et al., 2006; Crosby and Whipple, 2006; Crosby et al., 2007).  So long as the 

lower reaches are not oversteepened (where Θ > 1), the steepness index should correlate with rock 

uplift rates as for steady-state rivers (Kirby et al., 2007).   

 

 
Figure 5. a) River long profile of river 14 showing the parameters used to derive knickpoint height and 

minimum incision.  The dashed line shows the total drainage area and The height of the top basin fill is also 

indicated by the grey line; b) Slope – area plot for the river 14 derived from a, showing the changes in 

scaling associated with the knickpoint and thrust front. 

 

Therefore, by analysing the distribution and characteristics of knickpoints it is now 

becoming possible to discriminate between different modes of formation (i.e., lithologic or 

tectonic), yield data on erosional responses to relative base level changes (e.g., Clark et al., 2005; 

Harkins et al., 2007; Castillo et al., 2013) and even to make estimates on the age of knickpoint 

formation and the rate of fault motion (e.g., Boulton and Whittaker, 2009).  Although, 

distinguishing between tectonic and climatic signals within a transient landscape remains an 

outstanding challenge for geomorphologists (Kirby and Whipple, 2012). 

 

METHODS 

Longitudinal river profiles (draining southwards from the watershed to the confluence with the 

Dades-Draa River across the SAF) were extracted using a combination of the RiverTools 3.0 
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programme and the ArcInfo suite of programmes.  A hole-filled 3 arc-s Shuttle Radar Topography 

Mission (SRTM) derived Digital Elevation Model (DEM) with a ~ 90 m ground resolution (USGS, 

2006) was chosen. In this case, although the resolution is not sufficient to resolve narrow canyons 

within the DEM, the SRTM data was found to be of much better quality than the higher resolution 

ASTER DEM with 30 m resolution.  Furthermore, Wobus et al. (2006) found little difference 

between profiles extracted from 90 m DEM compared to 30 m DEMs.  DEM data were processed 

using the Imposed Gradients Plus method, an extension of the imposed gradients method of 

Garbrecht and Martz (1997) that reduces parallel flow within valley flats.  Although, RiverTools 

automatically fills pits within the DEM when calculating the flow grid, the original DEM can be 

viewed and areas of poor fit can be identified between the raw and filled DEM.  To reduce noise 

and artefacts in the data the longitudinal profile data were smoothed using a 30 m (vertical interval) 

moving average filter to remove spikes in elevation.  All major river systems were extracted along 

strike and were only selected where drainage area exceeded 10
5
 m

2
 (cf. Kirby and Whipple, 2001; 

Kirby et al., 2007).  Channel slope, S, and upstream drainage area, A, were calculated over an 

average of 20 m elevation intervals.  Unfortunately, four profiles from two river systems have 

significant ‘flats’ due to poor DEM resolution in areas of high relief and deep incision below the 

resolution of the DEM.  These profiles are still used for the analyses but slopes were not calculated 

over problematic intervals. Collectively, the slope and area data were then used to calculate the 

channel concavity, Θ, and the steepness index, ks, through a regression of the logarithms of S and A 

(Fig. 5).  As the concavity determines ks, we also quote the normalized steepness index, ksn, 

calculated using a reference concavity, Θref (Wobus et al., 2006).   Θref can be determined using the 

mean of observed Θ values of apparently undisturbed channels in the study area (here Θ = 0.6).  

However, in principle the differences in ksn do not depend on the Θref chosen (Wobus et al., 2006) 

and when Θref = 0.6 is applied to the Moroccan river data the errors become much larger than when 

a standard Θref = 0.45 is used.  Therefore Θref = 0.45 is used in this study as; a) the error is reduced 

in the resultant ksn value (Table 1), and b) the value is consistent with other studies that use Θref = 

0.45  (e.g., Wobus et al., 2003; 2006; Ouimet et al., 2009; DiBiase et al., 2009; Cyr et al., 2010; 

Miller et al., 2012) allowing for comparison.  

 Knickpoints were identified based upon observed breaks in scaling on the SA plots (Fig. 5).  

On rivers where knickpoints were identified, Θ and ksn were calculated separately for channel 

reaches above and below the knickpoint(s).  Knickpoints were also mapped onto the DEM so that 

any spatial relationships between knickpoint locations and lithological boundaries based upon 

published maps (Saadi et al., 1978) could be identified.  Furthermore, the amount of incision was 

estimated by projecting the river profile downstream of the knickpoint using the derived parameters 

of best fit steepness (ks) and concavity derived from Eq. 1 (derived from the a curve fit of slope 

versus area) and the modern drainage area to calculate slope above the knickpoint.  These slopes 

were then used to project the long profile downstream (c.f., Berlin and Anderson, 2007; Goldrick 

and Bishop, 2007; Harkins et al., 2007; Miller et al., 2012; Schildgen et al., 2012; Antón et al., 

2012).  The height of the present profile elevation at the thrust front was then subtracted from the 

reconstructed profile to give the change in channel elevation resulting from incision (Fig. 5) 

(Whipple and Tucker, 1999).  Errors in the prediction were estimated from the 95% (2σ) prediction 

bands.   Uncertainty in knickpoint elevations were taken as an error of ± 30 m, which has been 
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determined as the vertical error of SRTM data and used in other studies utilising SRTM data in 

mountainous areas (Harkins et al., 2007; Miller et al., 2012).   

 

RESULTS  

Twenty one of the 32 river profiles (Fig. 6) analyzed in this study exhibit knickpoints of which 17 

rivers have one knickpoint and 4 rivers have two knickpoints.  The eleven rivers that do not display 

knickpoints have concave-up profiles, are distributed along the entire length of the mountain range 

in the study area and are positioned in-between the rivers that display knickpoints (Fig. 7).  These 

concave-up rivers are often relatively short in length (average of 52 km upstream of Dades 

confluence), compared to an average of 67 km for rivers with knickpoints, with mean concavity (Θ) 

equalling 0.64 ± 0.3, over the range of 0.25 - 1.00 (table 1).  The normalized steepness index (ksn) of 

the concave-up rivers also shows variability ranging from 47.5 – 219.0 m
0.9

 (table 1).  There does 

not appear to be any identifiable pattern in the variation of either of these parameters along the 

strike of the range front but it should be noted that the majority of these concave-up rivers do flow 

over faults at the range front as do the rivers with knickpoints. 

 
Figure 6. River long profiles of all rivers extracted; solid line is the Dades-Draa River, black dashed lines 

indicated rivers with knickpoints, and grey solid lines indicate rivers lacking knickpoints. The star shows the 

knickpoint associated with the Dades-Draa. 

By contrast, 21 rivers exhibit a knickpoint or multiple knickpoints.  Although the 

morphologies of the rivers show some variation they share a number of characteristics (Fig. 8).  The 

majority of rivers exhibit slope-break morphology when S and A are plotted on a slope-area plot 

(Fig. 8), with ksn and Θ values higher below identified knickpoints (i.e., there is steepening across 

the knickpoint) than above.  By contrast, a few rivers exhibit vertical-step knickpoints where Θ and 

ksn show minimal or no change above and below the knickpoint.  
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Figure 7. Representative examples of concave-up river profiles (solid lines) exhibiting consistent power-law 

scaling between drainage area and slope. Rivers profiles and drainage areas (dashed lines) were extracted 

from the SRTM DEM (USGS, 2006) and each river is labelled with a number that corresponds to those 

shown in figure 3.  Arrows mark upstream and downstream limits of data used for regression analysis on the 

slope-area plots; the concavity ,Θ, and normalised steepness index, ksn, where Θ = 0.45 are also shown on 

the slope area plots. At the top of the long profile plot is a bar showing the lithology downstream (for key see 

Fig. 2) 
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Figure 8. Representative examples of river profiles (solid lines) that exhibit knickpoints (circles) and 

segmented power-law scaling characteristic of slope-break knickpoints where ksn increases downstream, 

each river is labelled with a number that corresponds to to those shown in figure 3.  Reconstructed relict 

profiles and position of the frontal thrust (arrow) are also shown.  At the top of the long profile plot is a bar 

showing the lithology downstream (for key see Fig. 2). 
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The presence of knickpoints on the long-profiles and SA plots, combined with documented 

evidence of gorges and high relief (Stokes et al,. 2008), can be explained as a result of transient 

fluvial incision across the region (i.e., Wobus et al., 2006; Berlin and Anderson, 2007; Harkins et 

al., 2007; Whittaker et al., 2007; 2008; Kirby and Whipple, 2012; Miller et al., 2012).  In order to 

determine the controls on and interpret the significance of the knickpoints identified along the 

southern margin of the High Atlas, firstly the relationship to lithological boundaries and the 

horizontal and vertical distribution of the knickpoints will be examined .  Followed by an 

assessment of other potential mechanisms of formation (i.e., river capture and uplift), finally the 

tectonic implications for the present of knickpoints will be considered. 

 

Spatial distribution of knickpoints 

 When the distribution of knickpoints is considered in relation to lithological contacts and 

faults, it can be observed that the vast majority of knickpoints do not lie on major lithological 

contacts (Fig. 2) and that knickpoints occur in a range of lithologies from Silurian and older schists, 

Permo-Triassic basalts to Jurassic limestones and sandstones upstream of the thrust front and 

mapped faults.   

 

 Figure 9. Grey scale hillshade of the study area with the drainage network coloured by variation of ksn 

downstream. 

However, some knickpoints do fall near to boundaries and all rivers cross multiple 

lithological boundaries but given the complex geological nature of the mountain belt this is not 

unexpected. Furthermore, when boundaries are traced along strike, knickpoints can be observed 

along some rivers yet not along others crossing the same boundary (i.e., the Lower Jurassic 

[Pleinsbachian] to Upper Cretaceous boundary in the west of the study area).   Yet these 
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observations cannot rule out changes in the strength of rocks due to intraformational variation, 

geological structures or unrecognised features to the scale of available maps. Compelling evidence 

against a dominant lithological control on knickpoint location comes from the SA plots that exhibit 

slope-break relationships and demonstrate increasing ksn below knickpoints (Figs. 8 and 9).  For 

example, along river 18 (Fig. 8; a tributary of the Izerki) ksn above the knickpoint is 80 m
0.9

 while 

below the knickpoint ksn = 130 m
0.9

, the plot shows a clear step (Fig. 8) and the concavity index is 

similar above and below the knickpoint.  Lithological resistance would not be expected to increase 

ksn downstream as this parameter is sensitive to uplift not rock strength (Synder et al., 2001; Wobus 

et al., 2006) indicating that these knickpoints are unlikely to be the result of a change in bedrock 

resistance.   

  In the western portion of the basin, a few knickpoints are closely associated with 

geological boundaries (i.e., the Upper Cretaceous limestones to Eocene sandstones and 

conglomerates boundary).  When the slope-area plots are considered for rivers 25, 27 and 29 the SA 

plot resembles a vertical-step knickpoint (Fig. 10).  For example, river 25 displays several peaks in 

the SA plot that correlate with knickpoints on the long profile (Fig. 10).  These knickpoints are 

located upon Permo-Triassic basalts or at the boundary between Cretaceous and Jurassic limestone. 

The ksn above and below the knickzones are the same within error for river 25, supporting a local 

control on river morphology.  River 29 also shows at vertical-step knickpoint at this boundary (Fig. 

10). River 27 is a tributary to river 25 and shows a spike in slope values typical of vertical-step 

relationships at the boundary between Eocene clastics and Cretaceous Limestone (Fig. 10).  In this 

case the ksn downstream is higher than ksn above the main knickpoint, possibly suggesting that some 

knickpoints may reflect combined lithological and base-level effects.  

We can now distinguish between knickpoints with no obvious lithological control and 

knickpoints that indicate lithological influence. When the spatial distribution of knickpoints is 

considered in relation to the trend and structure of the High Atlas, it is observed that the majority of 

knickpoints align along a trend sub-parallel to the strike of the mountain belt (Figs. 2 and 3) and 

upstream of the thrust front.  Only a few knickpoints in the west of the study area deviate from this 

trend; it is these rivers that appear to have a lithological influence to the position of the knickpoints, 

or the knickpoints are located very close to the catchment watershed.  Rivers 8 and 12 also lie off 

the along strike trend but these have smaller catchments that may be retarding the progress of 

knickpoints along the reach.  Finally, there appears to be no relationship between the location of 

knickpoints and major stream confluences (i.e., Figs. 8 - 9). 
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Figure 10. River profiles from the study area that exhibit knickpoints (circles) and segmented power-law 

scaling characteristic of vertical-step knickpoints where ksn does not increases downstream, each river is 

labelled with a number that corresponds to those shown in figure 3.  At the top of the long profile plot is a 

bar showing the lithology downstream (for key see Fig. 2). Note that on the topographic long profile some 

knickpoints can be less obvious than others yet can be clearly discerned on the SA plot, i.e., river 25. 
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Horizontal and vertical distribution of knickpoints 

 
Figure 11. Knickpoint elevations (above mean sea level) and river incision plotted with maximum and 

average swath profiles of the range topography.  Dotted lines shows potential vertical distribution of 

knickpoints into three elevation bands, analysis of horizontal knickpoint retreat distance against drainage 

area (Fig. 12b) shows that all knickpoints belong to the same generation and show a range in distribution. 

Figure 12a shows that there is no relationship between catchment drainage area and 

knickpoint elevation, and lithological and non-lithologically controlled knickpoints plot together.  

By contrast, horizontal retreat distance does scale with catchment area where rivers with larger 

catchments have knickpoints further upstream (Fig. 12b). The horizontal knickpoint retreat distance 

was measured from the mapped location of the frontal thrust, or the lithological boundary between 

the foreland basin sediments of the Ouarzazate Basin and the older rocks forming the High Atlas 

where a frontal thrust is not present at the surface.  This finding is in agreement with other studies 

(e.g., Bishop et al., 2005; Crosby and Whipple, 2006; Harkins et al., 2007; Jansen et al., 2011; 

Castillo et al., 2013) that have shown that the horizontal knickpoint retreat distance scales with total 

catchment area in fluvial systems, demonstrating that knickpoint retreat rate is a function of river 

discharge. Interestingly, the rivers where a lithological influence on knickpoint form has been 

implicated plot in the same field as the other knickpoints (Fig. 12). This suggests that although the 

present location of the knickpoints is at a lithological boundary these knickpoints may not be caused 

primarily by the lithological variation. Limited lithological or structural control on knickpoint 

formation has also been demonstrated in the Scottish Highlands (Jansen et al., 2011; Castillo et al., 

2013).   
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These observations on knickpoint 

elevation and retreat distance appear to contradict 

each other, on the one hand the knickpoint 

elevation indicates multiple knickpoint 

generations while analysis of horizontal retreat 

distasnce indicates only one generation of 

knickpoints. Although, Neimann et al. (2001) 

predict that the elevations of knickpoints that 

were generated at the same time should be the 

equal, in practice this is not always observed due 

to the presence of a threshold drainage area 

(Crosby and Whipple, 2006), inherited long-

profile characteristics (Castillo et al., 2013), 

sediment flux (Jansen et al., 2011), differential 

uplift rates along strike (Boulton and Whittaker, 

2009) or the presence of lithologies resistant to 

erosion (Berlin and Anderson, 2007).  Whereas, 

the horizontal retreat distance appears to always 

scale with drainage area (e.g., Bishop et al., 2005; 

Crosby and Whipple, 2006; Harkins et al., 2007; 

Jansen et al., 2011; Castillo et al., 2013), and thus 

knickpoints of different generations ought to 

show different scaling between catchment area 

and retreat distance.  

Therefore, the knickpoints in the High 

Atlas of Morocco are interpreted to have formed 

synchronously based upon the knickpoint retreat 

distance scaling with drainage area. 

Finally, the relationship between downstream 

distance (measured from river profiles) and the 

drainage area above the knickpoint is also 

considered.  These parameters can be fitted by a 

power-law function with an exponent of 0.45 

(Fig. 12c), thus exhibiting scaling 

behaviour consistent with Hack’s 

Law for stream profiles (Willemin, 

2000).  A similar relationship was 

recorded by Miller et al. (2012) for 

rivers in Papua New Guinea 

demonstrating that the knickpoints lie 

within channel networks rather than 

Figure 12. Graph of total drainage area versus elevation of the 

knickpoint, white circles indicate rivers where lithology plays a 

role in knickpoint position; b) Graph of total drainage area 

versus the distance the knickpoint has retreated from the thrust 

front.  A linear regression yields the best fit power-law 

equation: y = 0.14A0.82 with R2 = 0.61; c) Graph of drainage 

area (A) above knickpoint versus downstream distance from the 

divide (y) to the knickpoint.  A linear regression yields the best 

fit power-law equation: y = 2A0.45 with R2 = 0. 9. 
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at the hillslope – channel transition (e.g., 

Crosby and Whipple, 2006; Harkins et al., 

2007).  Furthermore, as there are a range of  

drainage areas upstream of the 

knickpoint it does not appear that the 

knickpoints have reached a threshold 

drainage area indicating that the landscape 

is still transiently responding to the change 

in boundary conditions that formed the 

knickpoints (Crosby and Whipple, 2006; 

Berlin and Anderson, 2007).   

Therefore, the spatial variations in 

the transient response observed in the 

rivers flowing southward across the SAF in 

the absence of strong lithological control 

are most easily explained by a relative 

lowering of base-level attributable to either 

stream capture or an increase in rock uplift.   

 

Longitudinal profile analysis 

 Using the findings above, we 

consider that the lowest knickpoint on each 

river formed during a single base-level fall 

event and thus channel segments above and 

below this knickpoint can be correlated.  

Rivers that have a lithological influence on 

knickpoint position (including those 

exhibiting two knickpoints) are again 

considered separately.    

 Concavity indices are generally higher downstream of knickpoints (mean Θ = 0.66) than 

above (mean Θ = 0.53), although the reverse is true for lithologically controlled knickpoints, 0.56 

and 0.77, below and above the knickpoint respectively.  The reaches above the higher knickpoint, 

where present, have a mean Θ of 0.75.  These means are high but not unusually so (Whipple, 2004; 

Kirby and Whipple, 2012). No along strike trends are evident in concavity either above or below the 

knickpoint (Fig. 13a).  Variation in concavity has been attributed to changes in rock strength 

(Duvall et al., 2003) with lower concavities in weaker rocks. 

Upstream of knickpoints, mean ksn equals 93 m
0.9 

spanning a range from 37 to 185 m
0.9

. The 

reach downstream of knickpoints typically has a higher ksn, the mean is 145 m
0.9

, over a range of 50 

– 509 m
0.9

 consistent with steepening below the knickpoint as a result of base-level fall.  For 

individual catchments the river is always steeper downstream by a factor of 1.2 to 4.  There appears 

to be no along strike variation in ksn above the knickpoint; however, ksn values below the knickpoint 

exhibit a weak west to east increase in ksn (Fig. 13b). 

Figure 13. A) Concavity indices (Θ) for each river segment 

plotted along the strike of the mountain front.  B). Ksn 

values (Θref = 0.45) for each river segment; symbols are 

the same for both graph. 
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The long profile downstream of the knickpoint was reconstructed downstream using extracted 

values for ks and Θ (cf., Berlin and Anderson, 2007; Miller et al., 2012).  ksn was not used as this 

proved to be a poor fit in most cases.  The modern elevation profile was then subtracted at the 

mountain front to give an estimate of incision (Fig. 5).  The mean incision estimate is 430 ± 248 m 

(excluding lithological knickpoints) with a maximum incision of 900 m.   When along strike 

variations are considered no strong relationship is observed, however, when the lithologically 

influenced knickpoints are included in the dataset there is a weak west to east increase in the 

estimated incision pattern (Fig. 13c).  Furthermore, there is a west to east increase in the elevation 

of the knickpoints (Fig. 11).                       

There are not enough data to undertake meaningful analyses on the higher knickpoints, but 

these may represent an earlier transient response to a landscape perturbation that has now almost 

completely migrated through the channel system. 

  

DISCUSSION 

Knickpoint formation as a result of river capture? 

Pastor et al. (2012b) identified piedmont stream capture events along seven of the rivers studied 

here, these were (Fig. 3): the Amaragh (river 23); the Tanjout (River 18, two capture events); the 

Madri (two capture events on the trunk river effecting rivers 14, 16, 17), and the Tabia (river 13).  

Pastor et al. (2012b) also identified capture events on a number of streams that are confined to the 

foreland basin, and are not considered here. The documented capture events result in a number of 

stepped fan pediments along 

many rivers, primarily as a 

result of intrinsic processes 

(e.g., erosion, sediment supply 

and transport), although Pastor 

et al. (2012b) do not rule out 

tectonic and climatic control on 

their formation.  However, 

given that these river capture 

events have been dated to have 

taken place multiple times 

throughout the Late Pleistocene 

and Quaternary (Pastor et al., 

2012b) on an 100 ka timescale, 

these intrinsic river captures 

cannot explain the single 

knickpoint generation observed 

upstream in the hinterland. 

However, the 

Ouarzazate Basin has 

undergone a continent-scale 

river capture event, as the 

Figure 14. River long profile (elevation against downstream distance) of 

the Todra river (solid line) and drainage area downstream (dashed 

lines), the knickpoint is indicated with a solid circle.  Inset shows the 

slope-area plot, steps in the long profile create noise in the data but a 

vertical step in the ksn values can be determined across the knickpoint. 
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Ouarzazate Basin was internally draining until the River Draa captured the Dades drainage system.  

This event is poorly dated but likely occurred ≤ 300 ka (Arboleya et al., 2008) and resulted in the 

incision and erosion of the foreland basin fill by 100 - 150 m, as such this event could be a 

mechanism for base-level fall leading to knickpoint formation.  If this were the case a number of 

broad predications can be made for the resulting form of rivers and knickpoints upstream of the 

capture site.  Firstly, knickpoints should be present in all of the drainages upstream of the capture 

site (i.e., all the rivers studied here), apart from streams with small drainage areas where the 

knickpoint may have already migrated through the system. Second, as the magnitude of base-level 

fall is controlled by the capture event, the resulting steepness (ksn) below the knickpoint will depend 

on the distance from the knickpoint to the capture point, therefore rivers central to the capture point 

will have steeper lower reaches than rivers that drain further along strike.  Thirdly, the calculated 

incision from profile-reconstructions should reflect the magnitude of incision.  Additionally, the 

reconstructed river profile should grade to the top basin fill of the Ouarzazate Basin as there is no 

differential uplift between the foreland and hinterland in this model. Finally, rivers to the east and 

therefore outside of the Ouarzazate Basin should not exhibit a knickpoint as rivers, such as the 

Todra (immediately east of the Dades), have not been captured by the Draa and discharge directly 

into the Sahara Desert. 

Each of these points can be tested using the observations made on the studied rivers. The 

first predication is that all rivers should exhibit knickpoints, unless the river has a small drainage 

area. Knickpoints are not present on all of the studied rivers but those that lack knickpoints do not 

have significantly drainage areas smaller than those that do (Table 1).  Secondly, rivers should be 

steeper downstream and the rivers most proximal to the capture will be the steepest.  Although, 

rivers are steeper below knickpoints, rivers 18-20 that are central to the capture site are not the 

steepest rivers, indeed there is a slight (although not significant) west to east increase in steepness 

inconsistent with this prediction (Fig. 13b).  Thirdly, estimates of incision should be consistent with 

the pre-capture base level (taken as the top basin fill terrace surface); however, the projected 

profiles lie substantially above the height of the top basin fill terrace surface (Fig. 5).  Furthermore, 

incision amounts vary considerably and also exhibit a slight west to east increase in estimated 

incision.  Fourthly, Figure 14 shows the river long profile and SA plot for the River Todrha, the 

long profile clearly shows a knickpoint 32 km downstream correlating with a break in scaling on the 

SA plot and an increase in ksn below the knickpoint from 77 m
0.9 

to 100 m
0.9

, as this river is not part 

of the Dades-Draa catchment this knickpoint cannot have formed through this capture event.  

Significantly, a knickpoint can also be observed on the long profile for the Dades-Draa River (Fig. 

6: star) near the capture area suggesting that this wave of incision has not migrated far into the 

basin.   

Furthermore, although there are very few studies that investigate rates of capture related 

incision, examples such as Stokes et al., (2002) describe a 90 m capture related base level fall that 

has transmitted a maximum of 20 km upstream from the capture site in 100 kyr.  Despite the 

uncertainties in the timing of the Dades-Draa capture, it seems unlikely that any capture related 

base-level lowering has propagated upstream out of the Ouarzazate Basin into the fold-and-thrust 

front regions of the High Atlas Mountains.  Therefore, the evidence does support the capture of the 

Dades by the Draa as the mechanism for knickpoint formation. 
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Knickpoint formation as a result of uplift? 

Having ruled out other mechanisms for knickpoint development, given that the 

reconstructed channel profiles project above the relict fan surfaces at the top of the basin fill, as well 

as the modern river base-level, and that the mountain front is faulted we attribute the knickpoint 

formation to an increase in rock uplift.  But do the knickpoints represent a transient response to an 

increase in slip-rate along a planar fault system resulting in relative base-level fall or could these 

knickpoints be localised above a flat-ramp transition on the thrust front?  Regalla et al., (2013) 

demonstrated that in the Tohoku Arc (Japan) two knickpoints develop as a result of the subsurface 

geometry of the thrust front where changes in the rate of uplift across a flat-ramp transition causes a 

steady-state convexity to form above the boundary in uplift domains; a second transient knickpoint 

migrates upstream at the initiation of faulting.  This does not appear to be the case in the High Atlas 

as the position of the knickpoints does not correlate to the position of fold axes, which should be 

present up to maximum of 5 km towards the hinterland from the frontal thrust zone based upon 

current mapping (Saadi et al., 1978; Beauchamp et al., 1999; El Harfi et al., 2006).   

By contrast, knickpoints developing above a thrust with a planar geometry will be transient 

in nature, forming due to the initiation, reactivation or acceleration of uplift along the fault.  In this 

case the magnitude of fluvial incision and elevation of knickpoints should be consistent with 

independent controls on the nature of the uplift.  Babault et al. (2008) using a range of geological 

observables argue that the main phase of uplift in the High Atlas took place during the Plio-

Quaternary with ~ 1000 m of surface uplift generated.  This study shows that knickpoints indicate a 

mean channel incision of 430 m and a maximum of ~ 1000 m.  Although, the mean only represents 

~50% of the total uplift previously proposed, the maximum incision calculated here does correlate 

with the 1000 m of surface uplift calculated by Babault et al. (2008).  Further constraints on fluvial 

incision rates and timing of faulting are not possible at this time but previous studies have 

constrained the geomorphic response times of fluvial landscapes to 10
5-6

 years (Snyder et al., 2000; 

Whittaker et al., 2007; Whittaker and Boulton, 2012).  Collectively, our data and other published 

analyses suggest that the initiation of the transient fluvial response was owing to an acceleration (or 

initiation) in uplift during the Plio-Quaternary in the High Atlas Mountains along a planar fault. 

The spatial pattern of uplift along the mountain front can be analysed using the steepness 

indices and transient incision.  Theoretical and empirical studies of the relationship between channel 

steepness and incision indicate that there is a positive relationship between these variables and that 

greater incision and steeper channels occur in areas of higher uplift and erosion (Kirby and 

Whipple, 2001; Snyder et al., 2001; Whipple, 2004; Kirby et al., 2007). Although, ksn also varies 

with precipitation, arid and semi-arid landscapes appear to be relatively insensitive to precipitation 

(D’Arcy and Whittaker, 2014) and given that precipitation is primarily controlled by altitude with 

no strong longitudinal gradients across the area (Cappy, 2006),  ksn is likely to be primarily 

responding to uplift in this case.  

Comparison with previous studies shows that ksn values cannot be directly converted into 

absolute uplift rates, for example Snyder et al., (2000) showed for Southern California that high 

uplift rates of 3-4 mm yr
-1

 correlated with higher ksn values > 71 and lower uplift rates of < 1 mm 
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yr
-1 

corresponded to ksn of < 71.  Similarly, Kirby et al., (2003) showed ksn > 80 for high uplift (1- 3 

mm yr
-1

 areas in the Himalaya, and low ksn (< 60) where uplift rates are ≤ 1 mm yr
-1

.  Yet, Duvall et 

al., (2004) in California recorded a maximum ksn of 31 m
0.9 

where uplift rates are ~ 5 mm yr
-1

.  In 

addition, there is the issue that in some studies there appears to be a linear relationship between 

steepness and uplift/incision (i.e., Kirby et al., 2003; Harkins et al., 2007), while other studies 

observed non-linear relationships between channel steepness and erosion rates (i.e., Duvall et al., 

2004; Ouimet et al., 2009).  Although ksn is not directly convertible to uplift rates,  given that both 

ksn and incision estimates (Fig. 13) exhibit a small increase towards the east, as do the elevation of 

the knickpoints, these collectively suggest that rock uplift rates may slightly increase along the 

strike of the mountain front from west to east. This pattern is consistent with previous estimates of 

uplift derived from terraces in the foreland basin (i.e., Arboleya et al., 2008).   

 

Tectonic implications 

 These results have two significant implications for the tectonic evolution and structure of the 

southern margin of the High Atlas Mountains. 

Firstly, two main models for the timing of uplift have been proposed.  Missenard et al. 

(2006) suggest that thermal uplift due to lithospheric thinning took place in the Middle Miocene 

overprinting already elevated topography formed as a result of tectonic shortening.  Teson and 

Teixell (2008) also argue that the Middle Miocene was the main period of topographic growth but 

as a result of tectonic compression and thrust faulting.  This model of Middle Miocene mountain 

growth is supported with geological evidence on the timing of sediment deposition in the 

Ouarzazate Basin (Teson et al., 2010) and apatite fission track analysis (Balestrieri et al., 2009).  

However, the proposition that current elevations were formed in the Miocene is at odds with other 

geological constraints on uplift that indicate two pulses of surface uplift have occurred, one > 25 

Ma and a more substantive uplift in the Plio-Quaternary (< 5 Ma) (El Harfi et al., 2001; 2006; 

Babault et al., 2008).  Given that fluvial response times to perturbations are often in the order of a 1 

– 5 million years (Whittaker and Boulton, 2012) and the projected amount of fluvial incision is on 

the order of 1000 m, it is likely that these rivers are responding to Plio-Quaternary not Middle 

Miocene uplift and resultant relative base-level fall causing the observed transient response in the 

rivers draining the High Atlas Mountains.  The proposed slight eastwards increase in presumed rock 

uplift also correlates with observations of increased tectonic shortening to the east (Teixell et al., 

2003).  Therefore, this geomorphological study favours a Plio-Quaternary timing for the 

development of the present elevation of the High Atlas Mountains but does not rule out an earlier 

phase of uplift in the Early to Middle Miocene.  
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Figure 15a) Sketch cross-section across the whole Atlas Mountains showing bivergent structure resulting 

from inversion of a Meoszoic rift system, after Babault et al., (2012).  Box shows the area shown in more 

detail in b-d. b) Cross-section showing the structure of the SAF in the west of the Ouarzazate Basin (in the 

area of rivers 13-23) interpreted as a high angle reactivated normal fault.  By contrast, for the eastern part 

of the basin (in the area of rivers 1 – 8) two models have been proposed – c) a fold and thrust belt with a 

reactivated normal fault forming an out-of-sequence thrust (i.e., El Harfi et al., 2001; Beauchamp et al., 

1999; Teson and Texiell, 2008) or d) a fold and thrust belt bounded by high-angle faults (i.e., Barbero et al., 

2007; Babault et al., 2012; Arboleya et al., 2004). 

Secondly, our results suggest that the geometry of the fault responsible for the landscape 

uplift has a planar rather than ramp-flat morphology, which has important implications for the 

structure of the SAF.  In general, the SAF is considered to be a relatively simple structure in the 

western part of the Ouarzazate Basin (Fig. 15b), consisting primarily of a high-angle reverse fault 

that initially developed during Mesozoic rifting and was subsequently reactivated to accommodate 

thick-skinned deformation  (Beauchamp et al., 1999; El Harfi et al., 2001; 2006; Frizon de Lamotte 

et al., 2009).  Thin-skinned low-angle faults, forming the thrust front, wedge-top basins and 

accommodating much of the crustal shortening have propagated at the southern margin of the Atlas 

Mountains further to the east (where the Dades and M’Goun rivers cross the SAF); these faults have 

been clearly imaged in seismic lines (Beauchamp et al., 1999). Although, offset Quaternary terraces 

in the Ouarzazate Basin suggest that active thrusting is occurring at the thrust front and may have 

stepped forward into the foreland basin (i.e., Arboleya et al., 2008; Pastor et al., 2012a), 

Beauchamp et al., (1999) consider that out-of-sequence thrusting has stepped active faulting back 

into the fold-and-thrust belt onto a reactivated and inverted normal fault (Fig. 15c).  Furthermore, 

alternative models suggest the presence of a high-angle fault at the boundary between the High 

Atlas and the foreland basin (Fig. 15d; Barbero et al., 2007; Babault et al., 2012; Arboleya et al., 

2004).  The presence of a significant high-angle structure at the southern margin of the High Atlas 

is supported by geophysical results, heat flow data show a steeply dipping high conductivity zone 

(Rimi, 1999) and seismic tomography and shear-wave splitting analyses (e.g., Palomeras et al., 
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2014; Miller et al., 2014) indicate that a significant (up to 26 km offset; Miller et al., 2014) and 

steep step in the lithospheric thickness occurs across the SAF.  These data are interpreted to 

correspond to a reactivated and inverted Mesozoic normal fault that is accommodating the uplift 

related to the convective removal of the lithospheric root to the Atlas during the Quaternary (Miller 

et al., 2014).  Therefore, our analyses suggest that knickpoint generation and landscape rejuvenation 

recorded in the fluvial systems is responding to reactivation of these crustal-scale reverse faults and 

not to activity on low-angle faults at the edge of the thrust front, supporting the results from 

geophysical imaging.  Although, we cannot differentiate between models showing the location of 

this high-angle structure at the thrust front or further into the hinterland. 

 

CONCLUSIONS 

We used stream profiles to analyse patterns in channel steepness and incision for rivers draining 

southwards from the central High Atlas across the South Atlas Fault along the northern margin of 

the Ouarzazate Basin.  As the timing and mechanisms for recent uplift in the High Atlas Mountains 

of Morocco are still under debate (e.g., Gomez et al., 2000; El Harfi et al., 2001; 2006; Barbero et 

al., 2007) these analyses have derived new information on the Plio-Quaternary landscape evolution 

that can be linked to tectonics. The rivers, forming the principle trunk drainage system of the 

Dades-Draa catchment, are characterised by the presence of one or more knickpoints on the river 

long profiles.  Knickpoint retreat distance is shown to scale with drainage area, which is 

characteristic of a single knickpoint formation event.  Furthermore, the normalised steepness index 

(ksn) increases below knickpoints (slope-break type) indicative of higher uplift rates downstream 

than above and the magnitude of calculated incision correlates with other geological estimates of 

uplift (e.g., Teixell et al., 2003; 2005; Balestrieri et al., 2009).  We also rule out mechanisms of 

knickpoint formation due to lithological contrasts and river capture.  Thereby we conclude that the 

knickpoints record a transient erosional response to an increase in rock uplift upon a fault, probably 

with a planar geometry, during the Plio-Quaternary.  Comparison to previous studies suggests that 

this structure may represent an inverted normal fault that initially formed during Jurassic rifting and 

subsequently reactivated due to regional compression and removal of the lithospheric root of the 

High Atlas Mountains.  Although, the rates and timings of uplift and incision need more accurate 

constraints to further clarify relationships, our analysis clearly demonstrates that in regions lacking 

quantitative data, stream profile analysis can be a powerful tool for understanding the underlying 

geodynamics of a collisional mountain belt system. 

 

ACKNOWLEDGMENTS 

We thank National Geographic (Grant no - 8609-09) for funding this project, and for the editor - 

Laurent Jolivet, Loreto Anton and anonymous reviewers for their constructive comments that have 

greatly improved this contribution 

 

 

REFERENCES  

Antón, L., Rodés, A., De Vicente, G., Pallàs, R., Garcia-Castellanos, D., Stuart, F. M., Braucher, R., 

& Bourlès, D., 2012. Quantification of fluvial incision in the Duero Basin (NW Iberia) from 



Boulton et al.2014               Moroccan river profiles 

 

26 

 

longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. 

Geomorphology, 165, 50-61. 

Antón, L., De Vicente, G., Muñoz-Martín, A., & Stokes, M., 2014. Using river long profiles and 

geomorphic indices to evaluate the geomorphological signature of continental scale drainage 

capture, Duero basin (NW Iberia). Geomorphology, 206, 250-261. DOI: 

10.1016/j.geomorph.2013.09.028 

Arboleya, M.L., Teixell, A. and Julivert, M., 2004, A structural transect through the high and 

middle Atlas of Morocco: Journal of African Earth Sciences, v. 39, p. 319–327. 

Arboleya, M-L., Babault, J., Owen, L.A., Teixell, A. and Finkel, R.C., 2008, Timing and nature of 

Quaternary fluvial incision in the Ouarzazate foreland basin, Morocco: Journal of the 

Geological Society [London], v. 165, p. 1059-1073. 

Babault, J.A., Teixell, A., Arboleya M.L., Charroud, M., 2008. A Late Cenozoic age for the long-

wavelength surface uplift of the Atlas Mountains of Morocco. Terra Nova, 20, 102-107. 

Babault, J., Van Den Driessche, J., and Teixell, A., 2012. Longitudinal to transverse drainage 

network evolution in the High Atlas (Morocco): The role of tectonics. Tectonics, 31(4). 

Balestrieri, M.L., Moratti, G., Bigazzi, G., and Algouti, A., 2009. Neogene exhumation of the 

Marrakech High Atlas (Morocco) recorded by apatite fission-track analysis: Terra Nova, v. 

21, p. 75–82. 

Barbero, L., Teixell, A., Arboleya, M. L., Río, P. D., Reiners, P. W., and Bougadir, B. 2007. 

Jurassic‐to‐present thermal history of the central High Atlas (Morocco) assessed by low‐

temperature thermochronology. Terra Nova, 19(1), 58-64. 

Beauchamp, W., Allmendinger, R. W., Barazangi, M., Demnati, A., El Alji, M., and Dahmani, M. 

1999. Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a 

geological‐geophysical transect. Tectonics, 18(2), 163-184. 

Berlin, M.M., and Anderson, R.S., 2007. Modeling of knickpoint retreat on the Roan Plateau, 

western Colorado. Journal of Geophysical Research, 112: F03S06. 

Doi:10.1029/2006JF000553 

Bishop, P., Hoey, T. B., Jansen, J. D., and Artza, I. L., 2005. Knickpoint recession rate and 

catchment area: The case of uplifted rivers in eastern Scotland. Earth Surface Processes and 

Landforms, 30(6), 767-778. 

Boulton, S. J. and Whittaker, A.C., 2009, Quantifying the slip rates, spatial distribution and 

evolution of active normal faults from geomorphic analysis: Field examples from an oblique-

extensional graben, southern Turkey: Geomorphology, v. 104, p. 299-316.            

Brocklehurst, S.H., 2010, Tectonics and geomorphology: Progress in Physical Geography, v. 34, p. 

357-383. 

Burbank, D.W., and Anderson, R.S., 2001. Tectonic Geomorphology. Blackwell, Oxford, UK. 

Cappy, S., 2006. Hydrological characterization of the Upper Draa Catchment: Morocco.  

Unpublished Ph.D Dissertation, Rheinischen Friedich-Wilhelm-Universität Bonn, Germany. 

Castillo, M., Bishop, P., and Jansen, J. D. 2013. Knickpoint retreat and transient bedrock channel 

morphology triggered by base-level fall in small bedrock river catchments: The case of the 

Isle of Jura, Scotland. Geomorphology, 180-181, 1-9. 



Boulton et al.2014               Moroccan river profiles 

 

27 

 

Clark, M.K., Maheo, G., Saleeby, J., Farley, K.A., 2005. The non-equilibrium landscape of the 

southern Sierra Nevade, California. GSA Today, 15, 4-10. 

Cook, K. L., Whipple, K.X., Heimsath, A.M., Hanks, T. C., 2009. Rapid incision of the Colorado 

River in Geln Canyon – insights from channel profiles, local incision rates, and modelling of 

lithologic controls. Earth Surface Processes and Landforms, 34, 994 – 1010. 

Crosby, B. T., and Whipple, K. X., 2006, Knickpoint initiation and distribution within fluvial 

networks, 236 waterfalls in the Waipaoa River, North Island, New Zealand: 

Geomorphology, v. 82, p. 16-38. 

Crosby, B. T., Whipple, K. X., Gasparini, N. M., & Wobus, C. W., 2007. Formation of fluvial 

hanging valleys: Theory and simulation. Journal of Geophysical Research: Earth Surface, 

112(F3). 

Cyr, A.J., Granger, D.E., Olivetti, V., Molin, P., 2010. Quantifying rock uplift rates using channel 

steepness and cosmogenic nuclide-determined erosion rates: examples from northern and 

southern Italy. Lithosphere, 2, 188-198. 

D'Arcy, M., & Whittaker, A. C., 2014. Geomorphic constraints on landscape sensitivity to climate 

in tectonically active areas. Geomorphology, 204, 366-381. 

DiBiase, R.A., Whipple, K.X., Heimsath, A.M., Ouimet, W.B., 2009. Landscape form and 

millennial erosion rates in the San Gabriel Mountains, California. Earth and Planetary 

Science Letters, 289, 134-144.  

Duvall, A., Kirby, E., & Burbank, D. 2004. Tectonic and lithologic controls on bedrock channel 

profiles and processes in coastal California. Journal of Geophysical Research: Earth Surface 

(2003–2012), 109(F3). 

El Harfi, A., Lang, J., Salomon, J., and Chellai, E. H., 2001, Cenozoic sedimentary dynamics of the 

Ouarzazate foreland basin (central High Atlas Mountains, Morocco): International Journal of 

Earth Science, v. 90, p. 393-411. 

El Harfi, A., Guiraud, M., and Lang, J., 2006. Deep-rooted ‘‘thick skinned’’ model for the High 

Atlas Mountains (Morocco). Implications for the structural inheritance of the southern Tethys 

passive margin: Journal of Structural Geology, v. 28, p. 1958-1976. 

Frizon de Lamotte, D., B. Saint Bezar, R. Bracene, and E. Mercier, 2000. The two main steps of the 

Atlas building and geodynamics of the western Mediterranean, Tectonics, 19, 740 – 761,. 

Frizon De Lamotte, D.., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., 

Guillocheau, F. and Michard, A. 2009. Mesozoic and Cenozoic vertical movements in the 

Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics, 475(1), 9-28. 

Garbrect, J., Martz, L.W., 1997. The assignment of drainage direction over flat surfaces in raster 

digital elevation models. Journal of Hydrology, 193, 204-213. 

Gomez, F., Beauchamp, W., and Barazangi, M., 2000, Role of the Atlas Mountains (northwest 

Africa) within the African-Eurasian plate-boundary zone: Geology, v. 28, p. 775–778. 

Goldrick, G., and Bishop, P., 2007. Regional analysis of bedrock stream long profiles: evaluation of 

Hack's SL form, and formulation and assessment of an alternative (the DS form). Earth 

Surface Processes and Landforms, 32(5), 649-671. 

Görler, K., Helmdach, F.F., Gaemers, P., Heissig, K., Hinsch, W., Mädler, K., Shwarzhans, W., and 

Zucht, M., 1988, The uplift of the central High Atlas as deduced from Neogene continental 



Boulton et al.2014               Moroccan river profiles 

 

28 

 

sediments of the Ouarzazate province, Morocco: Lecture Notes in Earth Sciences, v. 15, p. 

363–404. 

Harkins, N., Kirby, E., Heimsath, A., Robinson, R., Reiser, U., 2007. Transient fluvial incision in 

the headwaters of the Yellow River, northeastern Tibet, China. Journal of Geophysical 

Research – Earth Surface, 112: F03S04. 

Hasbargen, L.E., and Paola, C., 2000, Landscape instability in an experimental drainage basin: 

Geology, v. 28, p. 1067–1070. 

Hoke, G.D., Isacks, B.L., Jordan, T.E., Blanco, N,. Tomlinson, A.J., Ramezani, J., 2007. 

Geomorphic evidence for post-10Ma uplift of the western flank of the central Andes 18º30’ - 

22ºS. Tectonics, 26, TC5021. 

Hughes, P.D. Gibbard, P.L. and Woodward J.C., 2004, Quaternary glaciation in the Atlas 

Mountains of North Africa: Developments in Quaternary Science, v. 2, Part 3, p. 255-260. 

Jansen, J. D., Fabel, D., Bishop, P., Xu, S., Schnabel, C., and Codilean, A. T. 2011. Does 

decreasing paraglacial sediment supply slow knickpoint retreat?. Geology, 39(6), 543-546. 

Kirby, E., Ouimet, W., 2011. Tectonic geomorphology along the eastern margin of the Tibet: 

insights into the pattern and processes of active deformation adjacent to the Sichuan Basin. In: 

Gloguen, R., Ratschbacher, L. (eds). Growth and collapse of the Tibetan Plateau. Geological 

Society, London Special Publications, 353, 165-188. 

Kirby, E., and Whipple, K.X., 2001, Quantifying differential rock-uplift rates via stream profile 

analysis: Geology, v. 29, p. 415-418. 

Kirby, E., and Whipple, K.X., 2012. Expression of active tectonics in erosional landscapes. Journal 

of Structural Geology, 44, 54-75. 

Kirby, E., Whipple, K.X., Tang, W., and Chen, Z., 2003, Distribution of active rock uplift along the 

eastern margin of the Tibetan Plateau: Inferences from bedrock river profiles: Journal of 

Geophysical Research, v.108, 2217, doi:10.1029/2001JB000861. 

Kirby, E., Johnson, C., Furlong, K., and Heimsath, A., 2007, Transient channel incision along 

Bolinas Ridge, California: evidence for differential rock uplift adjacent to the San Andreas 

Fault: Journal of Geophysical Research, v. 112, F03S07, doi:10.1029/2006JF000559. 

Medina, F., Cherkaoui, T-E., 1991.  Focal mechanisms of the Atlas earthquakes, and tectonic 

implications. Geologische Rundschau, 80, 639 – 648. 

Miller, M. S., Becker, T. W., 2014. Reactivated lithospheric-scale discontinuities localize dynamic 

uplift of the Moroccan Atlas Mountains. Geology, 42(1), 35-38. 

Miller, S.R., Baldwin, S.L., Fitzgerald, P.G., 2012. Transient fluvial incision and active surface 

uplift in the Woodlark Rift of eastern Papua New Guinea. Lithosphere, 4, 131-149. 

Doi:10.1130/L135.1 

Missenard, Y., Zeyen, H., Frizon de Lamotte, D., Leturmy, P., Petit, C., Sebrier, M., Saddiqi, O., 

2006. Crustal versus asthenospheric origin of relief of the Atlas Mountains of Morocco. 

Journal of Geophysical research, 111, B03401 doi:10.1029/2005JB003708. 

Morel, J. L., and Meghraoui, M., 1996, The Goringe-Alboran-Tell (GALTEL) tectonic zone, a 

transpression system along the Africa-Eurasia plate boundary: Geology, v. 24, p. 755-758. 



Boulton et al.2014               Moroccan river profiles 

 

29 

 

Neimann, J.D., Gasparini, N.M., Tucker, G.E., and Bras, R.L., 2001, A quantitative evaluation of 

Playfair’s law and its use in testing long-term stream erosion models: Earth Surface Process 

and Landforms, v. 26, p. 1317-1332. 

Onana, P. N. E., Zouhri, L., Chaabane, A., El Mouraouah, A., Brahim, A. I., 2011. Recent 

seismicity of Central High Atlas and Ouarzazate basin (Morocco). Bulletin of Engineering 

Geology and the Environment, 70, 633-641. 

Ouimet, W. B., Whipple, K. X., and Granger, D. E. 2009. Beyond threshold hillslopes: Channel 

adjustment to base-level fall in tectonically active mountain ranges. Geology, 37(7), 579-582. 

Palomeras, I., Thurner, S., Levander, A., Liu, K., Villasenor, A., Carbonell, R., and Harnafi, M. 

2014. Finite‐frequency Rayleigh wave tomography of the western Mediterranean: Mapping its 

lithospheric structure. Geochemistry, Geophysics, Geosystems. DOI: 

10.1002/2013GC004861 

Pastor, A., Teixell, A., and Arboleya, M.L., 2012a. Rates of Quaternary deformation in the 

Ouarzazate Basin (Southern Atlas Front, Morocco). Annals of Geophysics, 55 (5) 1003 – 

1016 doi:10.4401/ag-4940 

Pastor, A., Babulat, J., Teixell, A., Arboleya, M.L., 2012b. Intrinsic stream-capture control of 

stepped fan pediments in the High Atlas piedmont of Ouarzazate (Morocco). Geomorphology, 

173-174, 88-103. 

Phillips J.D. and Lutz, J.D., 2008, Profile convexities in bedrock and alluvial streams: 

Geomorphology, v. 102, p. 554–566. 

Ramdani, F. 1998. Geodynamic implications of intermediate-depth earthquakes and volcanism in 

the intraplate Atlas mountains (Morocco). Physics of the Earth and Planetary Interiors, 

108(3), 245-260. 

Regalla, C., Kirby, E., Fisher, D., and Bierman, P., 2013. Active forearc shortening in Tohoku, 

Japan: Constraints on fault geometry from erosion rates and fluvial longitudinal profiles. 

Geomorphology, 195, 84-98. 

Rimi, A., 1999. Mantle heat flow and geotherms for the main geologic domains in Morocco. 

International Journal of Earth Sciences, 88(3), 458-466. 

Saadi, M., Hilali, E.A., Boudda, A., 1978. Ouarzazate 1:500000 Geological Map, Ministry of 

Energy and Mines, Geology Directorate, Kingdom of Morocco. 

Safran, E.B., Bierman, P.R., Aalton, R., Dunne, T., Whipple, K.X., Cafee, M., 2005. Erosion rates 

driven by channel network incision in the Bolivian Andes. Earth Surface Processes and 

Landforms, 30, 1007 – 1024. 

Schildgen, T. F., Cosentino, D., Bookhagen, B., Niedermann, S., Yıldırım, C., Echtler, H., 

Whittmann, and Strecker, M. R., 2012. Multi-phased uplift of the southern margin of the 

Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth 

and Planetary Science Letters, 317, 85-95. 

Schoenbohm, L.M., Whipple, K.X., Burchfield, B.C., Chen, L., 2004. Geomorphic constrains on 

surface uplift, exhumation and plateau growth in the Red River region, Yunnan Province, 

China. Geological Society of America Bulletin, 116, 895-909. 

Schumm, S.A., 2005. River Variability and Complexity. Cambridge University Press, New York. 



Boulton et al.2014               Moroccan river profiles 

 

30 

 

Seber, D., Barazangi, M., Tadili, B.A., Ramdami, M., Ibenbrahim, A., Ben Sari, D., 1996.  Three-

dimensional upper mantle structure beneath intraplate Atlas and interplate Rif Mountains of 

Morocco. Journal of Geophysical Research, 101, 3125-3138. 

Sebrier, M., Siame, L., Zouine, E. M., Winter, T., Missenard, Y. and Leturmy, P., 2006, Active 

tectonics in the Moroccan High Atlas: Compte Rendus Geoscience, v. 338, p. 65-79. 

Snyder, N.P., Whipple, K.X., Tucker, G.E. and Merrits, D.J., 2000, Landscape response to tectonic 

forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction 

region, Northern California: Geological Society of America Bulletin, v. 112, p. 1250-1263. 

Stäblein, G., 1988. Geomorphological aspects of the Quaternary evolution of the Ouarzazate Basin, 

Southern Morocco: Lecture Notes in Earth Sciences, v. 15, p. 433–443. 

Stokes, M., Mather, A. E., & Harvey, A. M., 2002. Quantification of river-capture-induced base-

level changes and landscape development, Sorbas Basin, SE Spain. Geological Society, 

London, Special Publications, 191(1), 23-35. 

Stokes, M.,  Mather, A.E., Belfoul, A. and Farik, F., 2008, Active and passive tectonic controls for 

transverse drainage and river gorge development in a collisional mountain belt (Dades 

Gorges, High Atlas Mountains, Morocco): Geomorphology, v. 102, p. 2-20. 

Teson, E. and Teixell, A., 2008, Sequence of thrusting and syntectonic sedimentation in the eastern 

sub-Atlas thrust belt (Dades and Mgoun valleys, Morocco): International Journal of Earth 

Sciences, v. 97, p. 103–113. 

Teixell, A., Arboleya, M.-L., and Julivert, M., 2003. Tectonic shortening and topography in the 

central High Atlas (Morocco): Tectonics, v. 22, p. 1–13. 

Teixell, A., Ayarza, P., Zeyen, H., Fernandez, M., Arboleya, M.L., 2005. Effects of mantle 

upwelling in a compressional setting: the Atlas Mountains of Morocco. Terra Nova, 17, 456-

461. 

Teson, E., Puyoe, E.L., Teixell, A., Barnolas, A., Agusti, J., Furio, M., 2010. Magnetostratigraphy 

of the Ouarzazte Basin: Implications for the timing of deformation and mountain building in 

the High Atlas Mountains of Morocco. Geodinamica Acta, 23, 151-165. 

Tucker, G. E., 2009, Natural experiments in landscape evolution: Earth Surface Processes and 

Landforms, v. 34, p. 1450-1460 

Tucker, G. E., and Whipple, K. X., 2002, Topographic outcomes predicted by stream erosion 

models: sensitivity analysis and inter-model comparison. v. 107, B9, p. 2179, 

doi:10.1029/2001JB000162. 

Tucker, G. E., and Hancock, G.R., 2010, Modelling landscape evolution: Earth Surface Processes 

Landforms, v. 35, p. 28–50. 

USGS 2006, Shuttle Radar Topography Mission, 3 Arc Second scene SRTM_p201r038, Filled 

Finished-B, Global Land Cover Facility, University of Maryland, College Park, Maryland, 

February 2000. 

USGS, 2010.  National Earthquake Information Centre.  http://earthquake.usgs.gov/regional/neic/ 

accessed 24 August 2011. 

Walsh, L.S., Martin, A.J., Ojha, T.P., Fedenczuk, T., 2012. Correlations of fluvial knickpoints with 

landslide dams, lithologic contacts, and faults in the southwestern Annapurna Range, central 

http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/


Boulton et al.2014               Moroccan river profiles 

 

31 

 

Nepalese Himalaya. Journal of Geophysical Research, 117: F01012. 

Doi:10.1029/2011JF001984. 

Whipple, K.X., 2004. Bedrock rivers and the geomorphology of active orogens. Annual review of 

Earth and Planetary Sciences, 32, 151-185. 

Whipple, K.X., and Tucker, G.E., 1999, Dynamics of the stream power incision model: implications 

for the height limits of mountain ranges, landscape response timescales and research needs. 

Journal Geophysical Research, v. 104, p. 17661-17674. 

Whipple, K.X., and Tucker, G.E., 2002, Implications of sediment-flux dependent river incision 

models for landscape evolution: Journal Geophysical Research, v. 107(B2), doi: 

10.1029/2000JB044 

Whittaker, A. C., and Boulton, S. J., 2012. Tectonic and climatic controls on knickpoint retreat rates 

and landscape response times, Journal of Geophysical Research-Earth Surface, 117:F02024, 

doi:10.1029/2011JF002157 

Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E., and Roberts, G., 2007. Contrasting transient 

and steady-state rivers crossing active normal faults: new field observations from the Central 

Appenines, Italy: Basin Research, v. 19, p. 529-556. 

Whittaker, A.C., Attal, M., Cowie, P.A., Tucker, G.E., and Roberts, G., 2008. Decoding temporal 

and spatial patterns of fault uplift using transient river long profiles: Geomorphology, v. 100, 

p. 506-526. 

Willemin, J. H., 2000. Hack's Law: Sinuosity, convexity, elongation, Water Resources Research, 

36(11), 3365–3374, doi:10.1029/2000WR900229. 

Wobus, C.W., Hodges, K.V., and Whipple, K.X., 2003. Has focussed denudation sustained active 

thrusting at the Himalayan topographic front? Geology, v. 31, p.861-864. 

Wobus, C.W., Whipple, K.X., Kirby E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and 

Sheehan, D., 2006, Tectonics from topography: procedures, promise, pitfalls. In: Willett, S., 

Hovius, N., Brandon, M., Fisher, D., (Eds.), Tectonics, Climate and Landscape Evolution. 

GSA Special Paper 3  

Wohl, E.E., Merritt, D.M., 2001. Bedrock channel morphology. Geological Society of America 

Bulletin 113:1205-121298, 55-74. 



Boulton et al.2014               Moroccan river profiles 

 

32 

 

  
Table 1. River data for the 32 studied rivers; distance along strike is from east to west; Θ = 

concavity; Ks = steepness index; Ksn = normalised steepness index with reference concavity (either 

0.45 or 0.6) stated. * Denotes rivers with second (higher) knickpoint – second line denotes 

parameters for river channel above this second knickpoint. 
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Table 2. Characteristics of knickpoints in the study area. *Incision is calculated by projecting the 

long profile above the knickpoint downstream.  Dkp = distance downstream from headwaters to 

knickpoint. 

 


