3,846 research outputs found
Catch-up growth in children with chronic kidney disease started on enteral feeding after 2 years of age
BACKGROUND: Enteral feeding by tube in chronic kidney disease (CKD) before 2 years of age improves growth. Whether it is effective after this age is unknown. We assessed whether height and weight SDS changed after tube feeding was started in children with CKD above 2 years of age. METHODS: Retrospective study of pre-transplant, pre-pubertal children (< 11 years) with CKD stages 2–5 started on nasogastric tube or gastrostomy feeds for the first time after age 2 years. Children were identified by searching dietetic records and the renal database. Children on growth hormone were excluded. Height, weight, and BMI were documented 1 year prior to and at the start of tube feeds, and after 1 and 2 years. Data collection ceased at transplantation. RESULTS: Fifty children (25 male) were included. The median (range) age at start of tube feeds was 5.6 (2.1–10.9) years. Sixteen children were dialysed (1 haemodialysis, 15 peritoneal dialysis); 34 predialysis patients had a median (range) eGFR of 22 (6–88) ml/min/1.73 m2. Overall height SDS (Ht SDS) improved from − 2.39 to − 2.27 at 1 year and − 2.18 after 2 years (p = 0.02). BMI SDS improved from − 0.72 to 0.23 after 1 year and was 0.09 after 2 years of enteral feeding (p < 0.0001). Height SDS improved more in children aged 2–6 years (− 2.13 to − 1.68, p = 0.03) and in children not on dialysis (− 2.33 to − 1.99, p = 0.002). CONCLUSIONS: Enteral tube feeding commenced after 2 years of age in prepubertal children with CKD improves height and weight SDS, with stability of BMI during the second year. Younger children and those not on dialysis had the greatest benefit
Thionation of N-Methyl- and N-Unsubstituted Thiazolidine Enaminones
The potential of the directional non-bonded 1,5-type S···O interactions to initiate an incipient stage of an in situ rearrangement of N-unsubstituted thiazolidine enaminones to the functionalized 1,2-dithioles has
been demonstrated. Spectral characteristics, as well as an X-ray structural analysis of the selected rearranged product, indicate that a dynamic interconversion occurs in a solution between the 1,2-dithiole and 3,3aλ⁴,4-trithia-1-azapentalene bicylic form. The lack of the rearrangement in the case of the N-methyl substituted enaminone precursor is attributed to an unfavorable methyl migration in the last reaction step
Morphological Characteristics of Breast and Thigh Muscles of Autochthonous Breeds of Chickens
Morphological characteristics of skeletal muscles of autochthonous breeds of chickens are very important for meat quality and comparison with current hybrids for intensive production. The autochthonous breeds used in the experiment were Sombor crested and Banat naked neck, both sexes. For the purposes of morphological examination, tissue samples were taken from the thigh muscle (m. biceps femoris) and muscles of the breast (m. pectoralis profundus) of 5 male and female animals of each breed. After a standard histological procedure for conventional light microscopy, samples were stained with hematoxylin - eosin. After the processing of the samples for the histochemical analysis, samples were stained with the enzyme succinate - dehydrogenase (SDH) with the aim of determining the presence of different muscle cell types (red, white and intermediate). Morphological parameters, in this study, were diameter of muscle cells, nucleocytoplasmic ratio of muscle cells, volume density of connective tissue within the muscle and the presence of red, white and intermediate muscle cell types. Comparison of diameters of muscle cells thigh and breast muscles between Sombor crested and Banat naked neck have showed that kind of muscle, race or gender have no significant effect on the differences in this parameter. There were no statistically significant differences in the nucleo-cytoplasmic ratio of the volume density of the connective tissue of muscles. Red muscle cells were, in both autochthonous breeds, significantly more represented in m. biceps femoris than m. pectoralis profundus. The results of this study indicate that no differences were observed between autochthonous breeds in morphological parameters for examined breast and thigh muscle
Medical data processing and analysis for remote health and activities monitoring
Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
Arrival time and intensity binning at unprecedented repetition rates
Understanding dynamics on ultrafast timescales enables unique and new insights
into important processes in the materials and life sciences. In this respect,
the fundamental pump-probe approach based on ultra-short photon pulses aims at
the creation of stroboscopic movies. Performing such experiments at one of the
many recently established accelerator-based 4th-generation light sources such
as free-electron lasers or superradiant THz sources allows an enormous
widening of the accessible parameter space for the excitation and/or probing
light pulses. Compared to table-top devices, critical issues of this type of
experiment are fluctuations of the timing between the accelerator and external
laser systems and intensity instabilities of the accelerator-based photon
sources. Existing solutions have so far been only demonstrated at low
repetition rates and/or achieved a limited dynamic range in comparison to
table-top experiments, while the 4th generation of accelerator-based light
sources is based on superconducting radio-frequency technology, which enables
operation at MHz or even GHz repetition rates. In this article, we present the
successful demonstration of ultra-fast accelerator-laser pump-probe
experiments performed at an unprecedentedly high repetition rate in the few-
hundred-kHz regime and with a currently achievable optimal time resolution of
13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple
beam parameters relevant for the experiment, allows us to achieve an excellent
sensitivity in real-world ultra-fast experiments, as demonstrated for the
example of THz-field-driven coherent spin precession
Zeolite-based photocatalysts immobilized on aluminum support by plasma electrolytic oxidation
The preparation and properties of zeolite-containing oxide coatings obtained
by plasma electrolytic oxidation are investigated and discussed. Pure and
Ce-exchanged natural (clinoptilolite) and synthetic (13X) zeolites are
immobilized on aluminum support from silicate-based electrolyte. Obtained
coatings are characterized with respect to their morphology, phase and chemical
composition, photocatalytic activity and anti-corrosion properties. It is
observed that all mentioned properties of obtained coatings are dependent on
processing time and type of immobilized zeolite. Coatings with Ce-exchanged
zeolite show higher photocatalytic activity and more effective corrosion
protection than those with pure zeolite. The highest photocatalytic activity is
observed for coatings processed in pulsed a DC regime for 30 minutes containing
Ce-exchanged 13X zeolite, followed by those containing Ce-exchanged
clinoptilolite. Pronounced anti-corrosion properties feature almost all samples
containing Ce-exchanged 13X zeolite
Properties of ZnO/ZnAlO composite PEO coatings on zinc
Recently the successful formation of PEO coatings on zinc in a phosphate
aluminate electrolyte was shown. The produced composite coatings contain
various mixtures of ZnO and ZnAlO. In frame of the current study, the
properties of the formed coatings including adhesion/cohesion, wear, corrosion
and photocatalytic activity were analysed to identify possible applications.
However, the coatings show internal porosity and a sponge-like structure. Thus
the cohesion within the coating is quite low. Pull-off tests have demonstrated
clear rupture within the PEO layer at strength values as low as 1 MPa. The
photocatalytic activity is limited, in spite of the formation of a higher
amount of ZnO at shorter treatment times. Interestingly, the composite coatings
of ZnO and higher amounts of ZnAlO spinel showed a higher activity, but
not sufficient for fast and effective catalytic cleaning applications
Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices
Pristine graphene is a semimetal and thus does not have a band gap. By making
a nanometer scale periodic array of holes in the graphene sheet a band gap may
form; the size of the gap is controllable by adjusting the parameters of the
lattice. The hole diameter, hole geometry, lattice geometry and the separation
of the holes are parameters that all play an important role in determining the
size of the band gap, which, for technological applications, should be at least
of the order of tenths of an eV. We investigate four different hole
configurations: the rectangular, the triangular, the rotated triangular and the
honeycomb lattice. It is found that the lattice geometry plays a crucial role
for size of the band gap: the triangular arrangement displays always a sizable
gap, while for the other types only particular hole separations lead to a large
gap. This observation is explained using Clar sextet theory, and we find that a
sufficient condition for a large gap is that the number of sextets exceeds one
third of the total number of hexagons in the unit cell. Furthermore, we
investigate non-isosceles triangular structures to probe the sensitivity of the
gap in triangular lattices to small changes in geometry
- …