273 research outputs found

    Liquid Xenon Detectors for Positron Emission Tomography

    Full text link
    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).Comment: Paper presented at the International Nuclear Physics Conference, Vancouver, Canada, 201

    Measuring dopaminergic function in the 6-OHDA-lesioned rat: a comparison of PET and microdialysis

    Get PDF
    BACKGROUND: [(18) F]fluorodopa (FDOPA) positron emission tomography (PET) allows assessment of levodopa (LDOPA) metabolism and is widely used to study Parkinson's disease. We examined how [(18) F]FDOPA PET-derived kinetic parameters relate the dopamine (DA) and DA metabolite content of extracellular fluid measured by microdialysis to aid in the interpretation of data from both techniques. METHODS: [(18) F]FDOPA PET imaging and microdialysis measurements were performed in unilaterally 6-hydroxydopamine-lesioned rats (n = 8) and normal control rats (n = 3). Microdialysis testing included baseline measurements and measurements following acute administration of LDOPA. PET imaging was also performed using [(11)C]dihydrotetrabenazine (DTBZ), which is a ligand for the vesicular monoamine transporter marker and allowed assessment of denervation severity. RESULTS: The different methods provided highly correlated data. Lesioned rats had reduced DA metabolite concentrations ipsilateral to the lesion (p < 0.05 compared to controls), with the concentration being correlated with FDOPA's effective distribution volume ratio (EDVR; r = 0.86, p < 0.01) and DTBZ's binding potential (BP(ND); r = 0.89, p < 0.01). The DA metabolite concentration in the contralateral striatum of severely (>80%) lesioned rats was lower (p < 0.05) than that of less severely lesioned rats (<80%) and was correlated with the ipsilateral PET measures (r = 0.89, p < 0.01 for BP(ND)) but not with the contralateral PET measures. EDVR and BP(ND) in the contralateral striatum were not different from controls and were not correlated with the denervation severity. CONCLUSIONS: The demonstrated strong correlations between the PET and microdialysis measures can aid in the interpretation of [(18) F]FDOPA-derived kinetic parameters and help compare results from different studies. The contralateral striatum was affected by the lesioning and so cannot always serve as an unaffected control

    Different pieces of the same puzzle : a multifaceted perspective on the complex biological basis of Parkinson’s disease

    Get PDF
    The biological basis of the neurodegenerative movement disorder, Parkinson’s disease (PD), is still unclear despite it being ‘discovered’ over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen “PD experts” from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen

    Large-scale detector testing for the GAPS Si(Li) Tracker

    Full text link
    Lithium-drifted silicon [Si(Li)] has been used for decades as an ionizing radiation detector in nuclear, particle, and astrophysical experiments, though such detectors have frequently been limited to small sizes (few cm2^2) and cryogenic operating temperatures. The 10-cm-diameter Si(Li) detectors developed for the General Antiparticle Spectrometer (GAPS) balloon-borne dark matter experiment are novel particularly for their requirements of low cost, large sensitive area (~10 m2^2 for the full 1440-detector array), high temperatures (near -40\,^\circC), and energy resolution below 4 keV FWHM for 20--100-keV x-rays. Previous works have discussed the manufacturing, passivation, and small-scale testing of prototype GAPS Si(Li) detectors. Here we show for the first time the results from detailed characterization of over 1100 flight detectors, illustrating the consistent intrinsic low-noise performance of a large sample of GAPS detectors. This work demonstrates the feasibility of large-area and low-cost Si(Li) detector arrays for next-generation astrophysics and nuclear physics applications.Comment: Updated to version accepted in IEEE Trans Nucl Sci. Minor changes to text, fixed plotting error on Fig. 5. Conclusions unchange

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    Reactions to treatment debriefing among the participants of a placebo controlled trial

    Get PDF
    BACKGROUND: A significant proportion of trial participants respond to placebos for a variety of conditions. Despite the common conduct of these trials and the strong emphasis placed on informed consent, very little is known about informing participants about their individual treatment allocation at trial closure. This study aims to address this gap in the literature by exploring treatment beliefs and reactions to feedback about treatment allocation in the participants of a placebo-controlled randomized clinical trial (RCT). METHODS: Survey of trial participants using a semi-structured questionnaire including close and open-ended questions administered as telephone interviews and postal questionnaires. Trial participants were enrolled in a double-blind placebo-controlled RCT evaluating the effectiveness of corticosteroid for heel pain (ISRCTN36539116). The trial had closed and participants remained blind to treatment allocation. We assessed treatment expectations, the percentage of participants who wanted to be informed about their treatment allocation, their ability to guess and reactions to debriefing. RESULTS: Forty-six (73%) contactable participants responded to our survey. Forty-two were eligible (four participants with bilateral disease were excluded as they had received both treatments). Most (79%) participants did not have any expectations prior to receiving treatment, but many 'hoped' that something would help. Reasons for not having high expectations included the experimental nature of their care and possibility that they may get a placebo. Participants were hopeful because their pain was so severe and because they trusted the staff and services. Most (83%) wanted to be informed about their treatment allocation and study results. Over half (55%) said they could not guess which treatment they had been randomized to, and many of those who attempted a guess were incorrect. Reactions to treatment debriefing were generally positive, including in placebo responders. CONCLUSION: Our study suggests that most trial participants want to be informed about their treatment allocation and trial results. Further research is required to develop measure of hope and expectancy and to rigorously evaluate the effects of debriefing prospectively

    GDNF and Parkinson's Disease : Where Next? A Summary from a Recent Workshop

    Get PDF
    The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.Peer reviewe
    corecore