89 research outputs found

    HITRAP: A facility at GSI for highly charged ions

    Full text link
    An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.Comment: 8 pages, 11 figure

    Observation of strong two-electron-one-photon transitions in few-electron ions

    Get PDF
    We resonantly excite the K series of O5+ and O6+ up to principal quantum number n = 11 with monochromatic x rays, producing K-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O5+ reveal strong two-electron-one-photon (TEOP) transitions. We find that for the [(1s2s)(1)5p(3)(/2)](3/2;1/2) states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states [(1s2p(3)(/2))(1)4s](3/2;1/2) of a Li-like satellite blend of the He-like K alpha transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger

    Gamma Factory at CERN – novel research tools made of light

    Get PDF
    We discuss the possibility of creating novel research tools by producing and storing highly relativistic beams of highly ionised atoms in the CERN accelerator complex, and by exciting their atomic degrees of freedom with lasers to produce high-energy photon beams. Intensity of such photon beams would be by several orders of magnitude higher than offered by the presently operating light sources, in the particularly interesting gamma-ray energy domain of 0.1-400 MeV. In this energy range, the high-intensity photon beams can be used to produce secondary beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions. New research opportunities in a wide domain of fundamental and applied physics can be opened by the Gamma Factory scientific programme based on the above primary and secondary beams.Comment: 12 pages; presented by W. Placzek at the XXV Cracow Epiphany Conference on Advances in Heavy Ion Physics, 8-11 January 2019, Cracow, Polan

    Electron-electron interaction in strong electromagnetic fields: The two-electron contribution to the ground-state energy in He-like uranium

    No full text
    Radiative recombination transitions into the ground state of cooled bare and hydrogen-like uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest he-like ions. For the two-electron contribution to the ionization potential of he-like uranium we obtain a value of 2248 #+-# 9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z he-like ions and the accuracy reaches already the size of the specific two-electron radiative QED corrections. (orig.)Available from TIB Hannover: RA 3692(04-11) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Reduction of uncertainties in exposure assessment based on environmental monitoring data.

    No full text
    Emergency preparedness and response systems for nuclear and radiological emergencies have to deal with decision-making in situations with relevant uncertainties. Consistent and appropriate protective measures must be decided before, during and after emergency situations. CONFIDENCE WP2 research helps to improve this decision-making process in the urgent response and the early response phase of emergency situations with potential major releases to atmosphere. This paper describes methods to reduce uncertainties in dose assessment for the population using data from stationary and mobile environmental monitoring programs. A special focus is given to identification of the measurement uncertainties of stationary and mobile monitoring systems. Methods to reduce these uncertainties and procedures to optimise mobile monitoring strategies are discussed. A first contribution towards assessing the quality of dose-rate measurements performed by the general population is made. In addition, the paper introduces approaches for advanced dose assessment tools using monitoring data and concepts for identifying critically exposed groups
    corecore