945 research outputs found

    An approach to optimum subsonic inlet design

    Get PDF
    Inlet operating requirements are compared with estimated inlet separation characteristics to identify the most critical inlet operating condition. This critical condition is taken to be the design point and is defined by the values of inlet mass flow, free-stream velocity and inlet angle of attack. Optimum flow distributions on the inlet surface were determined to be a high, flat top Mach number distribution on the inlet lip to turn the flow quickly into the inlet and a flat bottom skin-friction distribution on the diffuser wall to diffuse the flow rapidly and efficiently to the velocity required at the fan face. These optimum distributions are then modified to achieve other desirable flow characteristics. Example applications are given

    Optimum subsonic, high-angle-of-attack nacelles

    Get PDF
    The optimum design of nacelles that operate over a wide range of aerodynamic conditions and their inlets is described. For low speed operation the optimum internal surface velocity distributions and skin friction distributions are described for three categories of inlets: those with BLC, and those with blow in door slots and retractable slats. At cruise speed the effect of factors that reduce the nacelle external surface area and the local skin friction is illustrated. These factors are cruise Mach number, inlet throat size, fan-face Mach number, and nacelle contour. The interrelation of these cruise speed factors with the design requirements for good low speed performance is discussed

    The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    Full text link
    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency PROBA2 mission that was launched in November 2009. LYRA acquires solar irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, that have been chosen for their relevance to solar physics, space weather and aeronomy. In this article, we briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe the way that data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium

    Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red

    Full text link
    Optical resonances spanning the Near and Short Infra-Red spectral regime were exhibited experimentally by arrays of plasmonic nano-particles with concave cross-section. The concavity of the particle was shown to be the key ingredient for enabling the broad band tunability of the resonance frequency, even for particles with dimensional aspect ratios of order unity. The atypical flexibility of setting the resonance wavelength is shown to stem from a unique interplay of local geometry with surface charge distributions

    The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations

    Get PDF
    We have developed a model of the high-energy accretion region for magnetic cataclysmic variables and applied it to {\it Extreme Ultraviolet Explorer} observations of 10 AM Herculis type systems. The major features of the EUV light curves are well described by the model. The light curves exhibit a large variety of features such as eclipses of the accretion region by the secondary star and the accretion stream, and dips caused by material very close to the accretion region. While all the observed features of the light curves are highly dependent on viewing geometry, none of the light curves are consistent with a flat, circular accretion spot whose lightcurve would vary solely from projection effects. The accretion region immediately above the WD surface is a source of EUV radiation caused by either a vertical extent to the accretion spot, or Compton scattering off electrons in the accretion column, or, very likely, both. Our model yields spot sizes averaging 0.06 RWD_{WD}, or f1×103f \sim 1 \times 10^{-3} the WD surface area, and average spot heights of 0.023 RWD_{WD}. Spectra extracted during broad dip phases are softer than spectra during the out-of-dip phases. This spectral ratio measurement leads to the conclusion that Compton scattering, some absorption by a warm absorber, geometric effects, an asymmetric temperature structure in the accretion region and an asymmetric density structure of the accretion columnare all important components needed to fully explain the data. Spectra extracted at phases where the accretion spot is hidden behind the limb of the WD, but with the accretion column immediately above the spot still visible, show no evidence of emission features characteristic of a hot plasma.Comment: 30 Pages, 11 Figure

    Validation of Up-the-Ramp Sampling with Cosmic Ray Rejection on IR Detectors

    Get PDF
    We examine cosmic ray rejection methodology on data collected from InSb and Si:As detectors. The application of an Up-the-Ramp sampling technique with cosmic ray identification and mitigation is the focus of this study. This technique is valuable for space-based observatories which are exposed to high-radiation environments. We validate the Up-the-Ramp approach on radiation-test data sets with InSb and Si:As detectors which were generated for SIRTF. The Up-the-Ramp sampling method studied in this paper is over 99.9% effective at removing cosmic rays and preserves the structure and photometric quality of the image to well within the measurement error.Comment: 30 pages, 13 figures. Accepted for publication in the PASP, 25 October 200

    A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification

    Get PDF
    Background:Approximately 5%-10% of gastric cancers have a fibroblast growth factor receptor-2 (FGFR2) gene amplification. AZD4547 is a selective FGFR-1, 2, 3 tyrosine kinase inhibitor with potent preclinical activity in FGFR2 amplified gastric adenocarcinoma SNU16 and SGC083 xenograft models. The randomized phase II SHINE study (NCT01457846) investigated whether AZD4547 improves clinical outcome versus paclitaxel as second-line treatment in patients with advanced gastric adenocarcinoma displaying FGFR2 polysomy or gene amplification detected by fluorescence in situ hybridization. Patients and methods:Patients were randomized 3:2 (FGFR2 gene amplification) or 1:1 (FGFR2 polysomy) to AZD4547 or paclitaxel. Patients received AZD4547 80 mg twice daily, orally, on a 2 weeks on/1 week off schedule of a 21-day cycle or intravenous paclitaxel 80 mg/m2 administered weekly on days 1, 8, and 15 of a 28-day cycle. The primary end point was progression-free survival (PFS). Safety outcomes were assessed and an exploratory biomarker analysis was undertaken. Results:Of 71 patients randomized (AZD4547 n = 41, paclitaxel n = 30), 67 received study treatment (AZD4547 n = 40, paclitaxel n = 27). Among all randomized patients, median PFS was 1.8 months with AZD4547 and 3.5 months with paclitaxel (one-sided P = 0.9581); median follow-up duration for PFS was 1.77 and 2.12 months, respectively. The incidence of adverse events was similar in both treatment arms. Exploratory biomarker analyses revealed marked intratumor heterogeneity of FGFR2 amplification and poor concordance between amplification/polysomy and FGFR2 mRNA expression. Conclusions:AZD4547 did not significantly improve PFS versus paclitaxel in gastric cancer FGFR2 amplification/polysomy patients. Considerable intratumor heterogeneity for FGFR2 gene amplification and poor concordance between FGFR2 amplification/polysomy and FGFR2 expression indicates the need for alternative predictive biomarker testing. AZD4547 was generally well tolerated

    Human Wavelength Discrimination of Monochromatic Light Explained by Optimal Wavelength Decoding of Light of Unknown Intensity

    Get PDF
    We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats). Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions
    corecore